1aurent commited on
Commit
d46f929
1 Parent(s): 41f882e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -202,9 +202,11 @@ A version using the transformers library is also available here: https://hugging
202
  - Params: 85.8M (base)
203
  - Image size: 224 x 224 x 3
204
  - Patch size: 16 x 16 x 3
 
 
 
205
  - **Papers:**
206
  - [Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling](https://www.medrxiv.org/content/10.1101/2023.07.21.23292757v2)
207
- - **Dataset:** Pancancer40M, created from [TCGA-COAD](https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22content%22%3A%5B%7B%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-COAD%22%5D%7D%2C%22op%22%3A%22in%22%7D%2C%7B%22content%22%3A%7B%22field%22%3A%22files.experimental_strategy%22%2C%22value%22%3A%5B%22Diagnostic%20Slide%22%5D%7D%2C%22op%22%3A%22in%22%7D%5D%2C%22op%22%3A%22and%22%7D&searchTableTab=cases)
208
  - **Original:** https://github.com/owkin/HistoSSLscaling
209
  - **License:** [Owkin non-commercial license](https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt)
210
 
@@ -233,8 +235,8 @@ model = timm.create_model(
233
  data_config = timm.data.resolve_model_data_config(model)
234
  transforms = timm.data.create_transform(**data_config, is_training=False)
235
 
236
- input = transforms(img).unsqueeze(0) # (batch_size, num_channels, img_size, img_size) shaped tensor
237
- output = model(input) # (batch_size, num_features) shaped tensor
238
  ```
239
 
240
  ## Citation
 
202
  - Params: 85.8M (base)
203
  - Image size: 224 x 224 x 3
204
  - Patch size: 16 x 16 x 3
205
+ - **Pre-training:**
206
+ - Dataset: Pancancer40M, created from [TCGA-COAD](https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22content%22%3A%5B%7B%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-COAD%22%5D%7D%2C%22op%22%3A%22in%22%7D%2C%7B%22content%22%3A%7B%22field%22%3A%22files.experimental_strategy%22%2C%22value%22%3A%5B%22Diagnostic%20Slide%22%5D%7D%2C%22op%22%3A%22in%22%7D%5D%2C%22op%22%3A%22and%22%7D&searchTableTab=cases)
207
+ - Framework: [iBOT](https://github.com/bytedance/ibot), self-supervised, masked image modeling, self-distillation
208
  - **Papers:**
209
  - [Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling](https://www.medrxiv.org/content/10.1101/2023.07.21.23292757v2)
 
210
  - **Original:** https://github.com/owkin/HistoSSLscaling
211
  - **License:** [Owkin non-commercial license](https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt)
212
 
 
235
  data_config = timm.data.resolve_model_data_config(model)
236
  transforms = timm.data.create_transform(**data_config, is_training=False)
237
 
238
+ data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor
239
+ output = model(data) # output is a (batch_size, num_features) shaped tensor
240
  ```
241
 
242
  ## Citation