Wongkraiwich Chuenchomphu commited on
Commit
8a5d350
1 Parent(s): a796a1e

add model deps

Browse files
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ language:
4
+ - th
5
+ - en
6
+ metrics:
7
+ - accuracy
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - openthai
11
+ - pytorch
12
+ library_name: transformers
13
+ ---
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/project/lt900048-ai24tn/models/openthaigpt/openthai-llama-21000",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 32,
19
+ "pad_token_id": 0,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.40.1",
27
+ "use_cache": true,
28
+ "vocab_size": 56541
29
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.40.1"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step75
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77901fd826845fd170d28f7c5eb4edf599ee7baa58e9e1c5bd4f527ca26f4893
3
+ size 1167962
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": true,
43
+ "use_fast": false
44
+ }
trainer_state.json ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 75,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04,
13
+ "grad_norm": 20.00289492370743,
14
+ "learning_rate": 0.0,
15
+ "loss": 1.5756,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.08,
20
+ "grad_norm": 169.81482789708753,
21
+ "learning_rate": 5e-05,
22
+ "loss": 14.3496,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.12,
27
+ "grad_norm": 170.94221266882175,
28
+ "learning_rate": 7.924812503605781e-05,
29
+ "loss": 14.3495,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.16,
34
+ "grad_norm": 96.07266456886373,
35
+ "learning_rate": 0.0001,
36
+ "loss": 5.728,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.2,
41
+ "grad_norm": 74.89495923839695,
42
+ "learning_rate": 0.0001,
43
+ "loss": 3.198,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.24,
48
+ "grad_norm": 16.06625851910231,
49
+ "learning_rate": 9.859154929577466e-05,
50
+ "loss": 1.711,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.28,
55
+ "grad_norm": 11.432322037094815,
56
+ "learning_rate": 9.718309859154931e-05,
57
+ "loss": 1.1097,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.32,
62
+ "grad_norm": 10.90988949596415,
63
+ "learning_rate": 9.577464788732394e-05,
64
+ "loss": 1.1647,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.36,
69
+ "grad_norm": 5.166602608719267,
70
+ "learning_rate": 9.43661971830986e-05,
71
+ "loss": 0.6874,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.4,
76
+ "grad_norm": 5.063308573446352,
77
+ "learning_rate": 9.295774647887325e-05,
78
+ "loss": 0.6268,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.44,
83
+ "grad_norm": 7.227736963113414,
84
+ "learning_rate": 9.15492957746479e-05,
85
+ "loss": 0.5151,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.48,
90
+ "grad_norm": 4.259327811156309,
91
+ "learning_rate": 9.014084507042254e-05,
92
+ "loss": 0.4389,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.52,
97
+ "grad_norm": 6.156983867098677,
98
+ "learning_rate": 8.873239436619719e-05,
99
+ "loss": 0.5211,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.56,
104
+ "grad_norm": 5.241850109217824,
105
+ "learning_rate": 8.732394366197182e-05,
106
+ "loss": 0.3401,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.6,
111
+ "grad_norm": 45.75950192245342,
112
+ "learning_rate": 8.591549295774647e-05,
113
+ "loss": 0.6114,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.64,
118
+ "grad_norm": 12.747985157681715,
119
+ "learning_rate": 8.450704225352113e-05,
120
+ "loss": 0.4109,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.68,
125
+ "grad_norm": 6.204387028637272,
126
+ "learning_rate": 8.309859154929578e-05,
127
+ "loss": 0.3238,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.72,
132
+ "grad_norm": 1.784294966675183,
133
+ "learning_rate": 8.169014084507043e-05,
134
+ "loss": 0.2746,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.76,
139
+ "grad_norm": 1.0640451461171732,
140
+ "learning_rate": 8.028169014084508e-05,
141
+ "loss": 0.2216,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.8,
146
+ "grad_norm": 2.247533777438539,
147
+ "learning_rate": 7.887323943661972e-05,
148
+ "loss": 0.2169,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.84,
153
+ "grad_norm": 0.5843446520161867,
154
+ "learning_rate": 7.746478873239437e-05,
155
+ "loss": 0.2063,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.88,
160
+ "grad_norm": 0.6140022871361251,
161
+ "learning_rate": 7.605633802816902e-05,
162
+ "loss": 0.1924,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.92,
167
+ "grad_norm": 0.6328264593401415,
168
+ "learning_rate": 7.464788732394367e-05,
169
+ "loss": 0.1687,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.96,
174
+ "grad_norm": 0.47188590510134204,
175
+ "learning_rate": 7.323943661971832e-05,
176
+ "loss": 0.1502,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 1.0,
181
+ "grad_norm": 0.4569187747764233,
182
+ "learning_rate": 7.183098591549297e-05,
183
+ "loss": 0.1322,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 1.04,
188
+ "grad_norm": 0.5022295511205257,
189
+ "learning_rate": 7.042253521126761e-05,
190
+ "loss": 0.1283,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 1.08,
195
+ "grad_norm": 0.32747245962381083,
196
+ "learning_rate": 6.901408450704226e-05,
197
+ "loss": 0.105,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 1.12,
202
+ "grad_norm": 0.4071591561018996,
203
+ "learning_rate": 6.76056338028169e-05,
204
+ "loss": 0.1127,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 1.16,
209
+ "grad_norm": 0.4886479527811691,
210
+ "learning_rate": 6.619718309859155e-05,
211
+ "loss": 0.1097,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 1.2,
216
+ "grad_norm": 0.34862267892547183,
217
+ "learning_rate": 6.47887323943662e-05,
218
+ "loss": 0.1007,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 1.24,
223
+ "grad_norm": 0.33123650236209157,
224
+ "learning_rate": 6.338028169014085e-05,
225
+ "loss": 0.0945,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 1.28,
230
+ "grad_norm": 0.3246463353672584,
231
+ "learning_rate": 6.197183098591549e-05,
232
+ "loss": 0.0957,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 1.32,
237
+ "grad_norm": 0.3503498413159293,
238
+ "learning_rate": 6.056338028169014e-05,
239
+ "loss": 0.1007,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 1.3599999999999999,
244
+ "grad_norm": 0.2994313557882548,
245
+ "learning_rate": 5.915492957746479e-05,
246
+ "loss": 0.0961,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 1.4,
251
+ "grad_norm": 0.3098559906263102,
252
+ "learning_rate": 5.774647887323944e-05,
253
+ "loss": 0.0891,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 1.44,
258
+ "grad_norm": 0.3320370344139516,
259
+ "learning_rate": 5.633802816901409e-05,
260
+ "loss": 0.093,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 1.48,
265
+ "grad_norm": 0.2975761075734135,
266
+ "learning_rate": 5.492957746478874e-05,
267
+ "loss": 0.0824,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 1.52,
272
+ "grad_norm": 0.2609696051747955,
273
+ "learning_rate": 5.352112676056338e-05,
274
+ "loss": 0.0849,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 1.56,
279
+ "grad_norm": 0.2746218271104525,
280
+ "learning_rate": 5.2112676056338026e-05,
281
+ "loss": 0.0812,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 1.6,
286
+ "grad_norm": 0.27280756684282476,
287
+ "learning_rate": 5.070422535211268e-05,
288
+ "loss": 0.0857,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 1.6400000000000001,
293
+ "grad_norm": 0.3333732319784279,
294
+ "learning_rate": 4.929577464788733e-05,
295
+ "loss": 0.083,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 1.6800000000000002,
300
+ "grad_norm": 0.28187480716143415,
301
+ "learning_rate": 4.788732394366197e-05,
302
+ "loss": 0.0805,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 1.72,
307
+ "grad_norm": 0.25874624247743283,
308
+ "learning_rate": 4.647887323943662e-05,
309
+ "loss": 0.0806,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 1.76,
314
+ "grad_norm": 0.28417848530718226,
315
+ "learning_rate": 4.507042253521127e-05,
316
+ "loss": 0.0776,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 1.8,
321
+ "grad_norm": 0.24698649624452082,
322
+ "learning_rate": 4.366197183098591e-05,
323
+ "loss": 0.0765,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 1.8399999999999999,
328
+ "grad_norm": 0.23537664520973256,
329
+ "learning_rate": 4.225352112676056e-05,
330
+ "loss": 0.0758,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 1.88,
335
+ "grad_norm": 0.2534413438607467,
336
+ "learning_rate": 4.0845070422535214e-05,
337
+ "loss": 0.0804,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 1.92,
342
+ "grad_norm": 0.20702488497520458,
343
+ "learning_rate": 3.943661971830986e-05,
344
+ "loss": 0.0715,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 1.96,
349
+ "grad_norm": 0.2613262372736133,
350
+ "learning_rate": 3.802816901408451e-05,
351
+ "loss": 0.084,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 2.0,
356
+ "grad_norm": 0.22492435603929029,
357
+ "learning_rate": 3.661971830985916e-05,
358
+ "loss": 0.0556,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 2.04,
363
+ "grad_norm": 0.2611962185259755,
364
+ "learning_rate": 3.5211267605633805e-05,
365
+ "loss": 0.0481,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 2.08,
370
+ "grad_norm": 0.15962947759230994,
371
+ "learning_rate": 3.380281690140845e-05,
372
+ "loss": 0.0449,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 2.12,
377
+ "grad_norm": 0.1694677846392973,
378
+ "learning_rate": 3.23943661971831e-05,
379
+ "loss": 0.0482,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 2.16,
384
+ "grad_norm": 0.1438746814861677,
385
+ "learning_rate": 3.0985915492957744e-05,
386
+ "loss": 0.0425,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 2.2,
391
+ "grad_norm": 0.17430208968882352,
392
+ "learning_rate": 2.9577464788732395e-05,
393
+ "loss": 0.043,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 2.24,
398
+ "grad_norm": 0.17207620385513733,
399
+ "learning_rate": 2.8169014084507046e-05,
400
+ "loss": 0.0449,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 2.2800000000000002,
405
+ "grad_norm": 0.18001842523178951,
406
+ "learning_rate": 2.676056338028169e-05,
407
+ "loss": 0.0407,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 2.32,
412
+ "grad_norm": 0.20877963876068653,
413
+ "learning_rate": 2.535211267605634e-05,
414
+ "loss": 0.0418,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 2.36,
419
+ "grad_norm": 0.2086206476860082,
420
+ "learning_rate": 2.3943661971830986e-05,
421
+ "loss": 0.0432,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 2.4,
426
+ "grad_norm": 0.18489125316064906,
427
+ "learning_rate": 2.2535211267605634e-05,
428
+ "loss": 0.0443,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 2.44,
433
+ "grad_norm": 0.18836568321121092,
434
+ "learning_rate": 2.112676056338028e-05,
435
+ "loss": 0.0416,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 2.48,
440
+ "grad_norm": 0.18671273407693323,
441
+ "learning_rate": 1.971830985915493e-05,
442
+ "loss": 0.0392,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 2.52,
447
+ "grad_norm": 0.183141175658178,
448
+ "learning_rate": 1.830985915492958e-05,
449
+ "loss": 0.0406,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 2.56,
454
+ "grad_norm": 0.19023565118928507,
455
+ "learning_rate": 1.6901408450704224e-05,
456
+ "loss": 0.0392,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 2.6,
461
+ "grad_norm": 0.1734836339026565,
462
+ "learning_rate": 1.5492957746478872e-05,
463
+ "loss": 0.0408,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 2.64,
468
+ "grad_norm": 0.2124529691628785,
469
+ "learning_rate": 1.4084507042253523e-05,
470
+ "loss": 0.0402,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 2.68,
475
+ "grad_norm": 0.16929391483607104,
476
+ "learning_rate": 1.267605633802817e-05,
477
+ "loss": 0.0422,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 2.7199999999999998,
482
+ "grad_norm": 0.1865969813928253,
483
+ "learning_rate": 1.1267605633802817e-05,
484
+ "loss": 0.0423,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 2.76,
489
+ "grad_norm": 0.19199511508921327,
490
+ "learning_rate": 9.859154929577465e-06,
491
+ "loss": 0.0428,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 2.8,
496
+ "grad_norm": 0.15471843235506497,
497
+ "learning_rate": 8.450704225352112e-06,
498
+ "loss": 0.0383,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 2.84,
503
+ "grad_norm": 0.17211726924185472,
504
+ "learning_rate": 7.042253521126762e-06,
505
+ "loss": 0.0422,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 2.88,
510
+ "grad_norm": 0.16597891624795819,
511
+ "learning_rate": 5.6338028169014084e-06,
512
+ "loss": 0.0358,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 2.92,
517
+ "grad_norm": 0.16696499746864643,
518
+ "learning_rate": 4.225352112676056e-06,
519
+ "loss": 0.0384,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 2.96,
524
+ "grad_norm": 0.16841918706948866,
525
+ "learning_rate": 2.8169014084507042e-06,
526
+ "loss": 0.0399,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 3.0,
531
+ "grad_norm": 0.12380367991746002,
532
+ "learning_rate": 1.4084507042253521e-06,
533
+ "loss": 0.0275,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 3.0,
538
+ "step": 75,
539
+ "total_flos": 175054227243008.0,
540
+ "train_loss": 0.6997585766762495,
541
+ "train_runtime": 937.3587,
542
+ "train_samples_per_second": 103.388,
543
+ "train_steps_per_second": 0.08
544
+ }
545
+ ],
546
+ "logging_steps": 1.0,
547
+ "max_steps": 75,
548
+ "num_input_tokens_seen": 0,
549
+ "num_train_epochs": 3,
550
+ "save_steps": 500,
551
+ "total_flos": 175054227243008.0,
552
+ "train_batch_size": 12,
553
+ "trial_name": null,
554
+ "trial_params": null
555
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7fc176810fd9b3cd41a111aa8142543838dc193aad79a2d257a1ff5b70e73dc
3
+ size 7032
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)