Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
```python
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
7 |
+
import torch
|
8 |
+
from rich import print
|
9 |
+
|
10 |
+
image_path = "./OIP.jpeg"
|
11 |
+
|
12 |
+
image = Image.open(image_path)
|
13 |
+
|
14 |
+
model_name = "Abhaykoul/emo-face-rec"
|
15 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
16 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
17 |
+
|
18 |
+
|
19 |
+
inputs = processor(images=image, return_tensors="pt")
|
20 |
+
|
21 |
+
# Make a prediction
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
|
25 |
+
|
26 |
+
predicted_class_id = outputs.logits.argmax(-1).item()
|
27 |
+
predicted_emotion = model.config.id2label[predicted_class_id]
|
28 |
+
|
29 |
+
|
30 |
+
confidence_scores = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
31 |
+
scores = {model.config.id2label[i]: score.item() for i, score in enumerate(confidence_scores[0])}
|
32 |
+
|
33 |
+
# Print the results
|
34 |
+
print(f"Predicted emotion: {predicted_emotion}")
|
35 |
+
print("\nConfidence scores for all emotions:")
|
36 |
+
for emotion, score in scores.items():
|
37 |
+
print(f"{emotion}: {score:.4f}")
|
38 |
+
|
39 |
+
```
|