File size: 1,780 Bytes
e9c80eb
36972c1
75f38ca
 
 
 
36972c1
75f38ca
 
 
e9c80eb
 
75f38ca
e9c80eb
36972c1
75f38ca
 
e9c80eb
 
75f38ca
e9c80eb
36972c1
e9c80eb
 
75f38ca
e9c80eb
75f38ca
e9c80eb
75f38ca
 
 
 
 
 
 
 
 
 
 
 
e9c80eb
75f38ca
e9c80eb
75f38ca
 
 
 
 
 
 
 
 
 
 
 
e9c80eb
 
75f38ca
e9c80eb
75f38ca
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
base_model: mistralai/Mistral-7B-Instruct-v0.2
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
- LoRa
model-index:
- name: mistral-7b-sql
  results: []
---

# mistral-7b-sql

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the Hyper dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0316


## Intended uses & limitations

This model is intended to be used for Text-to-SQL tasks, such as an interface for querying a database in natural language.


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3669        | 0.9231 | 3    | 2.0030          |
| 1.9273        | 1.8462 | 6    | 1.6669          |
| 1.5048        | 2.7692 | 9    | 1.4241          |
| 0.915         | 4.0    | 13   | 1.2316          |
| 0.9884        | 4.9231 | 16   | 1.1354          |
| 0.8136        | 5.8462 | 19   | 1.0745          |
| 0.684         | 6.7692 | 22   | 1.0422          |
| 0.4341        | 8.0    | 26   | 1.0330          |
| 0.526         | 8.9231 | 29   | 1.0319          |
| 0.3763        | 9.2308 | 30   | 1.0316          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1