JosephGesnouin commited on
Commit
27b1417
1 Parent(s): 1321725

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -25
README.md CHANGED
@@ -20,13 +20,11 @@ LLaMandement-13B is a French chat LLM, based on [LLaMA-2-13B](https://ai.meta.co
20
  ## Model Details
21
 
22
  - **Developed by:** [DGFIP](https://www.impots.gouv.fr/presentation-de-la-dgfip-overview-dgfip) :
23
24
25
  - **Model type:** An auto-regressive language model based on the transformer architecture
26
  - **License:** Llama 2 Community License Agreement
27
  - **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288)
28
  - **Repository:** https://gitlab.adullact.net/dgfip/projets-ia/llamandement
29
- - **Paper:** working
30
 
31
  ## Prompt Template
32
 
@@ -47,28 +45,14 @@ Below is an instruction that describes a task. Write a response that appropriate
47
  - Command line interface: https://github.com/lm-sys/FastChat
48
  - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api
49
 
50
- ## Training Details
51
-
52
- Llamandement-13B is fine-tuned from Llama 2 using Low-Rank Adaptation (LORA). This method is efficient and adds minimal computational load. It introduces additional low-rank parameters, enabling the model to better handle complex legislative language without major changes to the original structure.
53
-
54
- **LORA Settings Adjustments:**
55
-
56
- - **Learning Rate (LR):** Set to a low value of 2e-5 to ensure stable and gradual improvements.
57
- - **Adaptation Depth (lora_r):** Set at 64, influencing the dimension of the low-rank matrix in LORA. This affected about 0.40% of the model's weights.
58
- - **Decay Rate:** Employed at 0.01 to prevent overfitting to specific legislative text structures.
59
- - **LORA Alpha (α):** Set at 16, it fine-tunes the model's response to legislative text.
60
- - **LORA Dropout:** A rate of 0.1 applied to LORA layers to prevent overfitting and enhance generalization.
61
- - **Optimizer and Scheduler:** Utilized a cosine learning rate scheduler with a warmup ratio of 0.03 for optimal training.
62
-
63
-
64
- For more information, visit [dgfip.finance.com](http://dgfip.finance.com). Additional details about the training dataset composition can be found [here](http://dgfip.finance.com/training-dataset-info).
65
-
66
-
67
 
68
  ## Citation
69
-
70
- Please cite the repo if you use the data, method or code in this repo.
71
-
72
- [...]
73
-
 
 
 
74
 
 
20
  ## Model Details
21
 
22
  - **Developed by:** [DGFIP](https://www.impots.gouv.fr/presentation-de-la-dgfip-overview-dgfip) :
 
 
23
  - **Model type:** An auto-regressive language model based on the transformer architecture
24
  - **License:** Llama 2 Community License Agreement
25
  - **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288)
26
  - **Repository:** https://gitlab.adullact.net/dgfip/projets-ia/llamandement
27
+ - **Paper:** [Technical Report](https://arxiv.org/abs/2401.16182)
28
 
29
  ## Prompt Template
30
 
 
45
  - Command line interface: https://github.com/lm-sys/FastChat
46
  - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  ## Citation
50
+ ```
51
+ @article{gesnouin2024llamandement,
52
+ title={LLaMandement: Large Language Models for Summarization of French Legislative Proposals},
53
+ author={Gesnouin, Joseph and Tannier, Yannis and Da Silva, Christophe Gomes and Tapory, Hatim and Brier, Camille and Simon, Hugo and Rozenberg, Raphael and Woehrel, Hermann and Yakaabi, Mehdi El and Binder, Thomas and others},
54
+ journal={arXiv preprint arXiv:2401.16182},
55
+ year={2024}
56
+ }
57
+ ```
58