--- tags: - generated_from_trainer base_model: dccuchile/bert-base-spanish-wwm-uncased metrics: - accuracy model-index: - name: Prototipo_5_EMI results: [] --- # Prototipo_5_EMI This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4215 - Accuracy: 0.538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.2459 | 0.1481 | 200 | 1.2168 | 0.4493 | | 1.1445 | 0.2963 | 400 | 1.0823 | 0.512 | | 1.1117 | 0.4444 | 600 | 1.0979 | 0.5053 | | 1.0618 | 0.5926 | 800 | 1.0457 | 0.5273 | | 1.0343 | 0.7407 | 1000 | 1.0219 | 0.537 | | 1.1239 | 0.8889 | 1200 | 1.0353 | 0.5257 | | 0.9012 | 1.0370 | 1400 | 1.0637 | 0.5383 | | 0.86 | 1.1852 | 1600 | 1.0682 | 0.5333 | | 0.898 | 1.3333 | 1800 | 1.0341 | 0.5483 | | 0.929 | 1.4815 | 2000 | 1.0437 | 0.5363 | | 0.9921 | 1.6296 | 2200 | 0.9968 | 0.5473 | | 0.9776 | 1.7778 | 2400 | 1.0418 | 0.5553 | | 0.9166 | 1.9259 | 2600 | 0.9874 | 0.5573 | | 0.703 | 2.0741 | 2800 | 1.0564 | 0.556 | | 0.8123 | 2.2222 | 3000 | 1.0582 | 0.561 | | 0.6727 | 2.3704 | 3200 | 1.0942 | 0.5483 | | 0.6843 | 2.5185 | 3400 | 1.1128 | 0.558 | | 0.7528 | 2.6667 | 3600 | 1.0823 | 0.5547 | | 0.7747 | 2.8148 | 3800 | 1.0744 | 0.5497 | | 0.7471 | 2.9630 | 4000 | 1.0749 | 0.5527 | | 0.5774 | 3.1111 | 4200 | 1.1422 | 0.552 | | 0.6105 | 3.2593 | 4400 | 1.2226 | 0.543 | | 0.573 | 3.4074 | 4600 | 1.2427 | 0.5417 | | 0.6047 | 3.5556 | 4800 | 1.2403 | 0.537 | | 0.5334 | 3.7037 | 5000 | 1.2470 | 0.5413 | | 0.5688 | 3.8519 | 5200 | 1.2585 | 0.5507 | | 0.4928 | 4.0 | 5400 | 1.2653 | 0.5437 | | 0.4314 | 4.1481 | 5600 | 1.3419 | 0.541 | | 0.4556 | 4.2963 | 5800 | 1.3677 | 0.5413 | | 0.4815 | 4.4444 | 6000 | 1.3912 | 0.5407 | | 0.4431 | 4.5926 | 6200 | 1.4004 | 0.5347 | | 0.4312 | 4.7407 | 6400 | 1.4161 | 0.5397 | | 0.459 | 4.8889 | 6600 | 1.4215 | 0.538 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1