shuaijiang commited on
Commit
79d38df
β€’
1 Parent(s): 66a4942

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -3
README.md CHANGED
@@ -1,3 +1,68 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ metrics:
4
+ - cer
5
+ ---
6
+ ## Welcome
7
+ If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE and https://github.com/shuaijiang/Whisper-Finetune
8
+
9
+ # Belle-whisper-large-v3-zh-punct
10
+ Fine tune whisper-large-v3-zh to enhance Chinese punctuation mark capabilities,
11
+ Belle-whisper-large-v3-zh-punct demonstrates similar performance to Belle-whisper-large-v3-zh on Chinese ASR benchmarks, including AISHELL1, AISHELL2, WENETSPEECH, and HKUST.
12
+
13
+ The punctuation mark come from model [punc_ct-transformer_cn-en-common-vocab471067-large](https://www.modelscope.cn/models/iic/punc_ct-transformer_cn-en-common-vocab471067-large/),
14
+ and was added to the training datasets.
15
+
16
+ ## Usage
17
+ ```python
18
+
19
+ from transformers import pipeline
20
+
21
+ transcriber = pipeline(
22
+ "automatic-speech-recognition",
23
+ model="BELLE-2/Belle-whisper-large-v3-zh-punct"
24
+ )
25
+
26
+ transcriber.model.config.forced_decoder_ids = (
27
+ transcriber.tokenizer.get_decoder_prompt_ids(
28
+ language="zh",
29
+ task="transcribe"
30
+ )
31
+ )
32
+
33
+ transcription = transcriber("my_audio.wav")
34
+
35
+ ```
36
+
37
+ ## Fine-tuning
38
+ | Model | (Re)Sample Rate | Train Datasets | Fine-tuning (full or peft) |
39
+ |:----------------:|:-------:|:----------------------------------------------------------:|:-----------:|
40
+ | Belle-whisper-large-v3-zh-punct | 16KHz | [AISHELL-1](https://openslr.magicdatatech.com/resources/33/) [AISHELL-2](https://www.aishelltech.com/aishell_2) [WenetSpeech](https://wenet.org.cn/WenetSpeech/) [HKUST](https://catalog.ldc.upenn.edu/LDC2005S15) | [lora fine-tuning](https://github.com/shuaijiang/Whisper-Finetune) |
41
+
42
+ To incorporate punctuation marks without compromising performance, Lora fine-tuning was employed.
43
+ If you want to fine-thuning the model on your datasets, please reference to the [github repo](https://github.com/shuaijiang/Whisper-Finetune)
44
+
45
+
46
+ ## CER(%) ↓
47
+ | Model | Language Tag | aishell_1_test(↓) |aishell_2_test(↓)| wenetspeech_net(↓) | wenetspeech_meeting(↓) | HKUST_dev(↓)|
48
+ |:----------------:|:-------:|:-----------:|:-----------:|:--------:|:-----------:|:-------:|
49
+ | whisper-large-v3 | Chinese | 8.085 | 5.475 | 11.72 | 20.15 | 28.597 |
50
+ | Belle-whisper-large-v3-zh | Chinese | 2.781 | 3.786 | 8.865 | 11.246 | 16.440 |
51
+ | Belle-whisper-large-v3-zh-punct | Chinese | 2.945 | 3.0 | 8.0 | 11.0 | 16.0 |
52
+
53
+ It is worth mentioning that compared to Belle-whisper-large-v3-zh, Belle-whisper-large-v3-zh-punct has a smilar performance.
54
+
55
+ ## Citation
56
+
57
+ Please cite our paper and github when using our code, data or model.
58
+
59
+ ```
60
+ @misc{BELLE,
61
+ author = {BELLEGroup},
62
+ title = {BELLE: Be Everyone's Large Language model Engine},
63
+ year = {2023},
64
+ publisher = {GitHub},
65
+ journal = {GitHub repository},
66
+ howpublished = {\url{https://github.com/LianjiaTech/BELLE}},
67
+ }
68
+ ```