Update README.md
Browse files
README.md
CHANGED
@@ -7,20 +7,21 @@ tags:
|
|
7 |
library_name: wildlife-datasets
|
8 |
license: cc-by-nc-4.0
|
9 |
---
|
10 |
-
# Model card for MegaDescriptor-
|
11 |
|
12 |
-
A Swin-L image feature model.
|
13 |
|
14 |
|
15 |
## Model Details
|
16 |
- **Model Type:** Animal re-identification / feature backbone
|
17 |
- **Model Stats:**
|
18 |
-
- Params (M):
|
19 |
- Image size: 224 x 224
|
|
|
20 |
- **Papers:**
|
21 |
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows --> https://arxiv.org/abs/2103.14030
|
22 |
- **Original:** ??
|
23 |
-
- **Pretrain Dataset:** All available re-identification datasets -->
|
24 |
|
25 |
## Model Usage
|
26 |
### Image Embeddings
|
@@ -33,7 +34,7 @@ import torchvision.transforms as T
|
|
33 |
from PIL import Image
|
34 |
from urllib.request import urlopen
|
35 |
|
36 |
-
model = timm.create_model("hf-hub:BVRA/
|
37 |
model = model.eval()
|
38 |
|
39 |
train_transforms = T.Compose([T.Resize(224),
|
|
|
7 |
library_name: wildlife-datasets
|
8 |
license: cc-by-nc-4.0
|
9 |
---
|
10 |
+
# Model card for MegaDescriptor-L-224
|
11 |
|
12 |
+
A Swin-L image feature model. Supervisely pre-trained on animal re-identification datasets.
|
13 |
|
14 |
|
15 |
## Model Details
|
16 |
- **Model Type:** Animal re-identification / feature backbone
|
17 |
- **Model Stats:**
|
18 |
+
- Params (M): 228.6
|
19 |
- Image size: 224 x 224
|
20 |
+
- Architecture: swin_large_patch4_window7_224
|
21 |
- **Papers:**
|
22 |
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows --> https://arxiv.org/abs/2103.14030
|
23 |
- **Original:** ??
|
24 |
+
- **Pretrain Dataset:** All available re-identification datasets --> https://github.com/WildlifeDatasets/wildlife-datasets
|
25 |
|
26 |
## Model Usage
|
27 |
### Image Embeddings
|
|
|
34 |
from PIL import Image
|
35 |
from urllib.request import urlopen
|
36 |
|
37 |
+
model = timm.create_model("hf-hub:BVRA/MegaDescriptor-L-224", pretrained=True)
|
38 |
model = model.eval()
|
39 |
|
40 |
train_transforms = T.Compose([T.Resize(224),
|