from transformers import PretrainedConfig repo_name = "BeardedMonster/SabiYarn-125M" class GPTJXConfig(PretrainedConfig): model_type="nanogpt-j" def __init__(self, block_size: int = 1024, vocab_size: int = 52050, #50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency n_layer: int = 12, n_head: int = 12, n_embd: int = 768, dropout: float = 0.0, bias: bool = False, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster **kwargs ): self.block_size = block_size self.vocab_size = vocab_size self.n_layer = n_layer self.n_head = n_head self.n_embd = n_embd self.dropout = dropout self.bias = bias super().__init__(**kwargs)