gia2-small / processor.py
ClementRomac's picture
ClementRomac HF staff
Upload processor
ef1b186
from itertools import chain
from transformers import GitProcessor
class GIAProcessor(GitProcessor):
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def _cut_text(self, examples, max_input_size):
results = {
"input_ids": [],
"attention_mask": []
}
for i in range(len(examples["input_ids"])):
_input_size = len(examples["input_ids"][i])
for j in range(max(1, _input_size // max_input_size)): # skip last if smaller than max_input_size
results["input_ids"].append(examples["input_ids"][i][j*max_input_size:(j + 1) * max_input_size])
results["attention_mask"].append(examples["attention_mask"][i][j * max_input_size:(j + 1) * max_input_size])
return results
def __call__(self, examples, max_input_size, return_tensors=None, **kwargs):
if "text" in examples and not "images" in examples:
encoded_text = self.tokenizer(examples["text"], return_tensors=return_tensors, max_length=max_input_size,
truncation=False, padding="max_length")
encoding = self._cut_text(encoded_text, max_input_size)
elif "text" in examples and "images" in examples:
encoding = super().__call__(examples["text"], examples["images"], return_tensors, **kwargs)
return encoding
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
return ["input_ids", "attention_mask", "pixel_values"]
GIAProcessor.register_for_auto_class("AutoProcessor")