Adapters
PyTorch
English
Kannada
llama
kannada
bilingual
AdithyaSK commited on
Commit
dad00de
1 Parent(s): cf224d6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ datasets:
4
+ - Cognitive-Lab/Kannada-Instruct-dataset
5
+ language:
6
+ - en
7
+ - kn
8
+ library_name: adapter-transformers
9
+ tags:
10
+ - kannada
11
+ - bilingual
12
+ ---
13
+
14
+ # Ambari-7B-Instruct-v0.2
15
+
16
+ ## Overview
17
+
18
+ Ambari-7B-Instruct-v0.1 is an extension of the Ambari series, a bilingual English/Kannada model developed and released by [Cognitivelab.in](https://www.cognitivelab.in/). This model is specialized for natural language understanding tasks, particularly in the context of instructional pairs. It is built upon the Ambari-7B-Base-v0.1 model, utilizing a fine-tuning process with a curated dataset of translated instructional pairs.
19
+
20
+ ## Difference between v0.1 and v0.2
21
+ The v0.2 version was finetune on the same dataset with all the same parameters but we didnt perform vocabular expansion, it is using the default tokenizer and was trained inorder to evaluate both the models side by side.
22
+
23
+ ## Usage
24
+
25
+ To use the Ambari-7B-Instruct-v0.1 model, you can follow the example code below:
26
+
27
+ ```python
28
+ # Usage
29
+ import torch
30
+ from transformers import LlamaTokenizer, LlamaForCausalLM
31
+
32
+ model = LlamaForCausalLM.from_pretrained('Cognitive-Lab/Ambari-7B-Instruct-v0.2')
33
+ tokenizer = LlamaTokenizer.from_pretrained('Cognitive-Lab/Ambari-7B-Instruct-v0.2')
34
+
35
+ prompt = "Give me 10 Study tips in Kannada."
36
+ inputs = tokenizer(prompt, return_tensors="pt")
37
+
38
+ # Generate
39
+ generate_ids = model.generate(inputs.input_ids, max_length=1000)
40
+ decoded_output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
41
+
42
+ print(decoded_output)
43
+ ```
44
+ ## Learn More
45
+
46
+ Read more about Ambari-7B-Instruct-v0.1 and its applications in natural language understanding tasks on the [Cognitivelab.in blog](https://www.cognitivelab.in/blog/introducing-ambari).
47
+
48
+
49
+ ## Dataset Information
50
+
51
+ The model is fine-tuned using the Kannada Instruct Dataset, a collection of translated instructional pairs. The dataset includes English instruction and output pairs, as well as their corresponding translations in Kannada. The intentional diversification of the dataset, encompassing various language combinations, enhances the model's proficiency in cross-lingual tasks.
52
+
53
+ ## Bilingual Instruct Fine-tuning
54
+
55
+ The model underwent a pivotal stage of supervised fine-tuning with low-rank adaptation, focusing on bilingual instruct fine-tuning. This approach involved training the model to respond adeptly in either English or Kannada based on the language specified in the user prompt or instruction.
56
+
57
+ ## References
58
+
59
+ - [Ambari-7B-Instruct Model](https://huggingface.co/Cognitive-Lab/Ambari-7B-Instruct-v0.1)
60
+ - [Ambari-7B-Base Model](https://huggingface.co/Cognitive-Lab/Ambari-7B-base-v0.1)
61
+ - [Kannada-Instruct-Dataset](https://huggingface.co/datasets/Cognitive-Lab/Kannada-Instruct-dataset)