File size: 2,158 Bytes
2021dcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: whisper-small-dv
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: dv
split: test
args: dv
metrics:
- name: Wer
type: wer
value: 11.072086796258302
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-dv
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2738
- Wer Ortho: 56.8842
- Wer: 11.0721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 3000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.1237 | 1.63 | 500 | 0.1702 | 63.0963 | 13.1429 |
| 0.0494 | 3.26 | 1000 | 0.1662 | 57.8592 | 11.6285 |
| 0.0315 | 4.89 | 1500 | 0.1894 | 58.3397 | 11.3937 |
| 0.0121 | 6.51 | 2000 | 0.2257 | 57.7756 | 11.5502 |
| 0.005 | 8.14 | 2500 | 0.2643 | 56.9747 | 11.1573 |
| 0.0056 | 9.77 | 3000 | 0.2738 | 56.8842 | 11.0721 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3
|