CreativeEvolution commited on
Commit
3c8cb65
1 Parent(s): 98195f3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1226.55 +/- 185.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac84c048fc042f3dbd42413010668c302418772728f8cb52a28c5bb3b5b5e58a
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f726edb78b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f726edb7940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f726edb79d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f726edb7a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f726edb7af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f726edb7b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f726edb7c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f726edb7ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f726edb7d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f726edb7dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f726edb7e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f726edb7ee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f726edb4d50>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674311583141761176,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJAgTr9XBeI+F0SuPiQmgb/8/0m/RsDrPSWlej6bSp8+pZ/JvlAAEr+gk0E9foYeveGpJT8C1eq+sdpqPsz0Kb3meii+A9ZDv4xVIT/4TpW9pX3wvWJ00r4uWx+/0+Hgu7WBfT8egvs++bbKPsURIT+jJgA//v+uPihh2j59ah5AITPuPxpacD8S2BS/P0EhvxhOTToBsli/ASZxv8nFMz8bSUS/oedGP25hbT64VxA+7byAP2Z2zb49di6/bpBrPwOlo779WwvAEd2LP6HaDT5JQoG/HoL7Pvm2yj6zcMu/+uN0PzptwL+9OQc/nawmQEPJHED0Hag/fDcDP/mTy78jQ3E+o2WZv1g6fb9RJvM6uypZP48jQz82Vio/VdcGQB9ytD80Eei++dMWPoAhhj+8oxu/m8SUwDgPAkBoAgq+SUKBvx6C+z75tso+xREhP78oYj9PjNy+KAlIPzdn7j+oZxK/cEUNwNkdH79j5oW/vVeEP//3Dr7nqfe+mPl9wLF8iL/dnJc/k/t1PUa3lj1WaPu8GX4eQMQLT72ae1u/RBmcv106DT/gcgBAKIiiPklCgb8egvs++bbKPrNwy7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACN0kK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD5sMvgAAAABkBPW/AAAAAEwo270AAAAAFZj8PwAAAABb5ea9AAAAAIbA8z8AAAAAiFJGPQAAAADXVOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6FENQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOE0tL0AAAAArFjqvwAAAABmuMC9AAAAAE+WAEAAAAAAER+lvQAAAACspeM/AAAAAHnV9b0AAAAAJkHbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4N1LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICBSgQ+AAAAANOq9r8AAAAATSr7vQAAAADf5vo/AAAAAMlOD74AAAAA7F3ZPwAAAACOjfy9AAAAAAfJAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACieA02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV3cBPgAAAACzF+m/AAAAAHLpkz0AAAAA6uztPwAAAAC6IQc+AAAAAJst7j8AAAAAtX88vAAAAABtTe6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIGDifvnbIuMAWyUTegDjAF0lEdAqN6Hbfxc3XV9lChoBkdAaHJpSJj2BmgHTegDaAhHQKje+1x82Jl1fZQoaAZHQIqLOSU1Q69oB03oA2gIR0Co4qXxFy7xdX2UKGgGR0CAkqjGkvboaAdN6ANoCEdAqOdQ1ivxIHV9lChoBkdAjhX2luWKM2gHTegDaAhHQKjr0wIMSbp1fZQoaAZHQI8WF/e+Eh9oB03oA2gIR0Co7Ek12q1gdX2UKGgGR0CGG6C2c8T0aAdN6ANoCEdAqO/gTAWSEHV9lChoBkdAh17wLeANG2gHTegDaAhHQKj0cVQAMlV1fZQoaAZHQI6u6cZtNztoB03oA2gIR0Co+OiXIEKWdX2UKGgGR0CFYsVs1sLwaAdN6ANoCEdAqPlf1QIldHV9lChoBkdAkN684T9KmWgHTegDaAhHQKj87bOeJ551fZQoaAZHQInoQhOgxrVoB03oA2gIR0CpAZ3K8tf5dX2UKGgGR0B1l1QsPJ7taAdN6ANoCEdAqQYxD9fkWHV9lChoBkdAhOPT3h4t6GgHTegDaAhHQKkGpJlJ6IF1fZQoaAZHQI2BfeN1hb5oB03oA2gIR0CpCkxISUTtdX2UKGgGR0CNRx6l+EytaAdN6ANoCEdAqQ8aJZW7v3V9lChoBkdAgnc8wpON52gHTegDaAhHQKkTrLwF1Sx1fZQoaAZHQIPQ2fRNRFZoB03oA2gIR0CpFCBpxm03dX2UKGgGR0B7kVNxlxwRaAdN6ANoCEdAqRfA4MnZ03V9lChoBkdAgMdS1eBxxWgHTegDaAhHQKkcbhNM4951fZQoaAZHQIlnN5IH1OFoB03oA2gIR0CpIP2oNutPdX2UKGgGR0CKpMixFAmiaAdN6ANoCEdAqSF7cAR02nV9lChoBkdAgSP5Grjo6mgHTegDaAhHQKklIiQDFId1fZQoaAZHQIB3gZQ53khoB03oA2gIR0CpKd9YGMXKdX2UKGgGR0CFixDej2zwaAdN6ANoCEdAqS58Xxe9jHV9lChoBkdAiK0tx+8XemgHTegDaAhHQKku/C/oJRh1fZQoaAZHQIjqYhKUVzpoB03oA2gIR0CpMpg7xNItdX2UKGgGR0CPQj1fVqetaAdN6ANoCEdAqTchUR3/xXV9lChoBkdAkU5JFw1iv2gHTegDaAhHQKk7n+98JD51fZQoaAZHQIpa0TURWcVoB03oA2gIR0CpPB4j8k2QdX2UKGgGR0COE/Kxs2vTaAdN6ANoCEdAqT+/0NBnjHV9lChoBkdAjc34mTkhimgHTegDaAhHQKlEXhE0BOp1fZQoaAZHQIw3V+EytV9oB03oA2gIR0CpSNvZh8YydX2UKGgGR0CNjM3Td+G5aAdN6ANoCEdAqUlPPkaMrHV9lChoBkdAj6FJn6Eal2gHTegDaAhHQKlM3LKV6eJ1fZQoaAZHQJBklbD/EO1oB03oA2gIR0CpUYI+W4VidX2UKGgGR0COpuc5sCT2aAdN6ANoCEdAqVX6nDR+jXV9lChoBkdAitNiDujRD2gHTegDaAhHQKlWe1w5vLp1fZQoaAZHQI78IVEd/8VoB03oA2gIR0CpWhjCHh0hdX2UKGgGR0CLzdpcHGCJaAdN6ANoCEdAqV6aA+Y+jnV9lChoBkdAinZcdo3712gHTegDaAhHQKljIZ7Xxvx1fZQoaAZHQIuLAGnn+yZoB03oA2gIR0CpY5b1Iy0sdX2UKGgGR0CRl4WDpTuOaAdN6ANoCEdAqWccRnOB2HV9lChoBkdAkDRtg4Otn2gHTegDaAhHQKlrwI3zcyp1fZQoaAZHQIxS/YpUgjhoB03oA2gIR0CpcDvHtF8YdX2UKGgGR0CSbSaB7NSqaAdN6ANoCEdAqXC1fLLZBnV9lChoBkdAjgn4JVsDXGgHTegDaAhHQKl0Typ71I11fZQoaAZHQI3EypNsWO9oB03oA2gIR0CpeP5Fw1iwdX2UKGgGR0CMSZlmOEM9aAdN6ANoCEdAqX14duHerXV9lChoBkdAkGN1nM+u/2gHTegDaAhHQKl97mTTvy91fZQoaAZHQI6zjImw7kpoB03oA2gIR0CpgZGig00ndX2UKGgGR0CRQMovi97GaAdN6ANoCEdAqYYXV/c32nV9lChoBkdAhuG8VxjriWgHTegDaAhHQKmKoF1SwW51fZQoaAZHQJNZB2fTTfBoB03oA2gIR0CpixqJl8PXdX2UKGgGR0CSMese4kNXaAdN6ANoCEdAqY6i8+Roy3V9lChoBkdAkL9CbYsd1mgHTegDaAhHQKmTO96C17Z1fZQoaAZHQIxTquSwGGFoB03oA2gIR0Cpl7io0hvBdX2UKGgGR0CMQ5r56+nJaAdN6ANoCEdAqZguqJdjXnV9lChoBkdAkX8AyRB/qmgHTegDaAhHQKmbqiyIHkd1fZQoaAZHQHaVv1+RYA9oB03oA2gIR0CpoFbo8p1BdX2UKGgGR0COgJjqfOD8aAdN6ANoCEdAqaTZ8YyftnV9lChoBkdAkGDLMs6JZWgHTegDaAhHQKmlUTZg5R11fZQoaAZHQIf4v0ulGgBoB03oA2gIR0CpqOLP2PDHdX2UKGgGR0B6GleD3/PxaAdN6ANoCEdAqa2NlTWGy3V9lChoBkdAkMtFdHDrJWgHTegDaAhHQKmyBWxQizN1fZQoaAZHQIbvQnv2GqRoB03oA2gIR0Cpsn6/qPfbdX2UKGgGR0CAGUpkPMB7aAdN6ANoCEdAqbYqMglniHV9lChoBkdAlATv0qYqomgHTegDaAhHQKm87XnQpnZ1fZQoaAZHQJBARW4mTkhoB03oA2gIR0CpwqBa9sabdX2UKGgGR0CTT7zK9wm3aAdN6ANoCEdAqcMWdqcmSnV9lChoBkdAjYrZy2hIv2gHTegDaAhHQKnGrKyv9tN1fZQoaAZHQI1H5ODaoMtoB03oA2gIR0Cpy2BNVR1pdX2UKGgGR0CR5Y+NtIkJaAdN6ANoCEdAqc/y+zt1IXV9lChoBkdAiZXdyT6i02gHTegDaAhHQKnQbIPsiSt1fZQoaAZHQJGUIoWpIc1oB03oA2gIR0Cp0/unuRcNdX2UKGgGR0CT9mSHM2WIaAdN6ANoCEdAqdiAD3dsSHV9lChoBkdAkEWc6JZW72gHTegDaAhHQKnc55fMOgB1fZQoaAZHQJFjKA2AG0NoB03oA2gIR0Cp3VxUm2LHdX2UKGgGR0CU7gx5cC5maAdN6ANoCEdAqeDlkQPI4nV9lChoBkdAkppvD1oQF2gHTegDaAhHQKnlcHB1s+F1fZQoaAZHQJVfMVtXPqtoB03oA2gIR0Cp6eFCLMs6dX2UKGgGR0CRahkJKJ2uaAdN6ANoCEdAqepeCAc1fnV9lChoBkdAkL0B5ooNNWgHTegDaAhHQKnt+ad+Xqt1fZQoaAZHQJNFSZKFqSJoB03oA2gIR0Cp8ozDwYtQdX2UKGgGR0CTuhWRRuTBaAdN6ANoCEdAqfbspobn5nV9lChoBkdAlMU1ruYx+WgHTegDaAhHQKn3Y3/givB1fZQoaAZHQJNR0Bltj1BoB03oA2gIR0Cp+vRl6JIldX2UKGgGR0CQ6GsTWXkYaAdN6ANoCEdAqf90v0yxiXV9lChoBkdAjG/28RL9M2gHTegDaAhHQKoD7nlGPPt1fZQoaAZHQJVrpd5Y5ktoB03oA2gIR0CqBGuymhugdX2UKGgGR0CXqphlDneSaAdN6ANoCEdAqgf1+iJwbXV9lChoBkdAketMQI2OyWgHTegDaAhHQKoMp21UlzF1fZQoaAZHQJJhCZ2IO6NoB03oA2gIR0CqEReWGATadX2UKGgGR0CVSivpQk5ZaAdN6ANoCEdAqhGMlme18nV9lChoBkdAkmdnEIgNgGgHTegDaAhHQKoVLceKba11fZQoaAZHQJgv8C8vmHRoB03oA2gIR0CqGcNm+TNddX2UKGgGR0CWD7vXK8tgaAdN6ANoCEdAqh4nGEPDpHV9lChoBkdAlX28zVMEimgHTegDaAhHQKoempobn5l1fZQoaAZHQJB98psoDxNoB03oA2gIR0CqIhjfvWpZdX2UKGgGR0CTnj6fra/RaAdN6ANoCEdAqiZ5YNiH7HVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:209cc0845300eae199132f7aad92cadb262495daf705044d924cd4b481a1aaad
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7de4b7a7f40c5b2f44ccb7f215b4774c7e09392ca479b3b5aed8fc5e481d743
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f726edb78b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f726edb7940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f726edb79d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f726edb7a60>", "_build": "<function ActorCriticPolicy._build at 0x7f726edb7af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f726edb7b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f726edb7c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f726edb7ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f726edb7d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f726edb7dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f726edb7e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f726edb7ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f726edb4d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674311583141761176, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJAgTr9XBeI+F0SuPiQmgb/8/0m/RsDrPSWlej6bSp8+pZ/JvlAAEr+gk0E9foYeveGpJT8C1eq+sdpqPsz0Kb3meii+A9ZDv4xVIT/4TpW9pX3wvWJ00r4uWx+/0+Hgu7WBfT8egvs++bbKPsURIT+jJgA//v+uPihh2j59ah5AITPuPxpacD8S2BS/P0EhvxhOTToBsli/ASZxv8nFMz8bSUS/oedGP25hbT64VxA+7byAP2Z2zb49di6/bpBrPwOlo779WwvAEd2LP6HaDT5JQoG/HoL7Pvm2yj6zcMu/+uN0PzptwL+9OQc/nawmQEPJHED0Hag/fDcDP/mTy78jQ3E+o2WZv1g6fb9RJvM6uypZP48jQz82Vio/VdcGQB9ytD80Eei++dMWPoAhhj+8oxu/m8SUwDgPAkBoAgq+SUKBvx6C+z75tso+xREhP78oYj9PjNy+KAlIPzdn7j+oZxK/cEUNwNkdH79j5oW/vVeEP//3Dr7nqfe+mPl9wLF8iL/dnJc/k/t1PUa3lj1WaPu8GX4eQMQLT72ae1u/RBmcv106DT/gcgBAKIiiPklCgb8egvs++bbKPrNwy7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACN0kK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD5sMvgAAAABkBPW/AAAAAEwo270AAAAAFZj8PwAAAABb5ea9AAAAAIbA8z8AAAAAiFJGPQAAAADXVOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP6FENQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOE0tL0AAAAArFjqvwAAAABmuMC9AAAAAE+WAEAAAAAAER+lvQAAAACspeM/AAAAAHnV9b0AAAAAJkHbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4N1LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICBSgQ+AAAAANOq9r8AAAAATSr7vQAAAADf5vo/AAAAAMlOD74AAAAA7F3ZPwAAAACOjfy9AAAAAAfJAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACieA02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV3cBPgAAAACzF+m/AAAAAHLpkz0AAAAA6uztPwAAAAC6IQc+AAAAAJst7j8AAAAAtX88vAAAAABtTe6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIGDifvnbIuMAWyUTegDjAF0lEdAqN6Hbfxc3XV9lChoBkdAaHJpSJj2BmgHTegDaAhHQKje+1x82Jl1fZQoaAZHQIqLOSU1Q69oB03oA2gIR0Co4qXxFy7xdX2UKGgGR0CAkqjGkvboaAdN6ANoCEdAqOdQ1ivxIHV9lChoBkdAjhX2luWKM2gHTegDaAhHQKjr0wIMSbp1fZQoaAZHQI8WF/e+Eh9oB03oA2gIR0Co7Ek12q1gdX2UKGgGR0CGG6C2c8T0aAdN6ANoCEdAqO/gTAWSEHV9lChoBkdAh17wLeANG2gHTegDaAhHQKj0cVQAMlV1fZQoaAZHQI6u6cZtNztoB03oA2gIR0Co+OiXIEKWdX2UKGgGR0CFYsVs1sLwaAdN6ANoCEdAqPlf1QIldHV9lChoBkdAkN684T9KmWgHTegDaAhHQKj87bOeJ551fZQoaAZHQInoQhOgxrVoB03oA2gIR0CpAZ3K8tf5dX2UKGgGR0B1l1QsPJ7taAdN6ANoCEdAqQYxD9fkWHV9lChoBkdAhOPT3h4t6GgHTegDaAhHQKkGpJlJ6IF1fZQoaAZHQI2BfeN1hb5oB03oA2gIR0CpCkxISUTtdX2UKGgGR0CNRx6l+EytaAdN6ANoCEdAqQ8aJZW7v3V9lChoBkdAgnc8wpON52gHTegDaAhHQKkTrLwF1Sx1fZQoaAZHQIPQ2fRNRFZoB03oA2gIR0CpFCBpxm03dX2UKGgGR0B7kVNxlxwRaAdN6ANoCEdAqRfA4MnZ03V9lChoBkdAgMdS1eBxxWgHTegDaAhHQKkcbhNM4951fZQoaAZHQIlnN5IH1OFoB03oA2gIR0CpIP2oNutPdX2UKGgGR0CKpMixFAmiaAdN6ANoCEdAqSF7cAR02nV9lChoBkdAgSP5Grjo6mgHTegDaAhHQKklIiQDFId1fZQoaAZHQIB3gZQ53khoB03oA2gIR0CpKd9YGMXKdX2UKGgGR0CFixDej2zwaAdN6ANoCEdAqS58Xxe9jHV9lChoBkdAiK0tx+8XemgHTegDaAhHQKku/C/oJRh1fZQoaAZHQIjqYhKUVzpoB03oA2gIR0CpMpg7xNItdX2UKGgGR0CPQj1fVqetaAdN6ANoCEdAqTchUR3/xXV9lChoBkdAkU5JFw1iv2gHTegDaAhHQKk7n+98JD51fZQoaAZHQIpa0TURWcVoB03oA2gIR0CpPB4j8k2QdX2UKGgGR0COE/Kxs2vTaAdN6ANoCEdAqT+/0NBnjHV9lChoBkdAjc34mTkhimgHTegDaAhHQKlEXhE0BOp1fZQoaAZHQIw3V+EytV9oB03oA2gIR0CpSNvZh8YydX2UKGgGR0CNjM3Td+G5aAdN6ANoCEdAqUlPPkaMrHV9lChoBkdAj6FJn6Eal2gHTegDaAhHQKlM3LKV6eJ1fZQoaAZHQJBklbD/EO1oB03oA2gIR0CpUYI+W4VidX2UKGgGR0COpuc5sCT2aAdN6ANoCEdAqVX6nDR+jXV9lChoBkdAitNiDujRD2gHTegDaAhHQKlWe1w5vLp1fZQoaAZHQI78IVEd/8VoB03oA2gIR0CpWhjCHh0hdX2UKGgGR0CLzdpcHGCJaAdN6ANoCEdAqV6aA+Y+jnV9lChoBkdAinZcdo3712gHTegDaAhHQKljIZ7Xxvx1fZQoaAZHQIuLAGnn+yZoB03oA2gIR0CpY5b1Iy0sdX2UKGgGR0CRl4WDpTuOaAdN6ANoCEdAqWccRnOB2HV9lChoBkdAkDRtg4Otn2gHTegDaAhHQKlrwI3zcyp1fZQoaAZHQIxS/YpUgjhoB03oA2gIR0CpcDvHtF8YdX2UKGgGR0CSbSaB7NSqaAdN6ANoCEdAqXC1fLLZBnV9lChoBkdAjgn4JVsDXGgHTegDaAhHQKl0Typ71I11fZQoaAZHQI3EypNsWO9oB03oA2gIR0CpeP5Fw1iwdX2UKGgGR0CMSZlmOEM9aAdN6ANoCEdAqX14duHerXV9lChoBkdAkGN1nM+u/2gHTegDaAhHQKl97mTTvy91fZQoaAZHQI6zjImw7kpoB03oA2gIR0CpgZGig00ndX2UKGgGR0CRQMovi97GaAdN6ANoCEdAqYYXV/c32nV9lChoBkdAhuG8VxjriWgHTegDaAhHQKmKoF1SwW51fZQoaAZHQJNZB2fTTfBoB03oA2gIR0CpixqJl8PXdX2UKGgGR0CSMese4kNXaAdN6ANoCEdAqY6i8+Roy3V9lChoBkdAkL9CbYsd1mgHTegDaAhHQKmTO96C17Z1fZQoaAZHQIxTquSwGGFoB03oA2gIR0Cpl7io0hvBdX2UKGgGR0CMQ5r56+nJaAdN6ANoCEdAqZguqJdjXnV9lChoBkdAkX8AyRB/qmgHTegDaAhHQKmbqiyIHkd1fZQoaAZHQHaVv1+RYA9oB03oA2gIR0CpoFbo8p1BdX2UKGgGR0COgJjqfOD8aAdN6ANoCEdAqaTZ8YyftnV9lChoBkdAkGDLMs6JZWgHTegDaAhHQKmlUTZg5R11fZQoaAZHQIf4v0ulGgBoB03oA2gIR0CpqOLP2PDHdX2UKGgGR0B6GleD3/PxaAdN6ANoCEdAqa2NlTWGy3V9lChoBkdAkMtFdHDrJWgHTegDaAhHQKmyBWxQizN1fZQoaAZHQIbvQnv2GqRoB03oA2gIR0Cpsn6/qPfbdX2UKGgGR0CAGUpkPMB7aAdN6ANoCEdAqbYqMglniHV9lChoBkdAlATv0qYqomgHTegDaAhHQKm87XnQpnZ1fZQoaAZHQJBARW4mTkhoB03oA2gIR0CpwqBa9sabdX2UKGgGR0CTT7zK9wm3aAdN6ANoCEdAqcMWdqcmSnV9lChoBkdAjYrZy2hIv2gHTegDaAhHQKnGrKyv9tN1fZQoaAZHQI1H5ODaoMtoB03oA2gIR0Cpy2BNVR1pdX2UKGgGR0CR5Y+NtIkJaAdN6ANoCEdAqc/y+zt1IXV9lChoBkdAiZXdyT6i02gHTegDaAhHQKnQbIPsiSt1fZQoaAZHQJGUIoWpIc1oB03oA2gIR0Cp0/unuRcNdX2UKGgGR0CT9mSHM2WIaAdN6ANoCEdAqdiAD3dsSHV9lChoBkdAkEWc6JZW72gHTegDaAhHQKnc55fMOgB1fZQoaAZHQJFjKA2AG0NoB03oA2gIR0Cp3VxUm2LHdX2UKGgGR0CU7gx5cC5maAdN6ANoCEdAqeDlkQPI4nV9lChoBkdAkppvD1oQF2gHTegDaAhHQKnlcHB1s+F1fZQoaAZHQJVfMVtXPqtoB03oA2gIR0Cp6eFCLMs6dX2UKGgGR0CRahkJKJ2uaAdN6ANoCEdAqepeCAc1fnV9lChoBkdAkL0B5ooNNWgHTegDaAhHQKnt+ad+Xqt1fZQoaAZHQJNFSZKFqSJoB03oA2gIR0Cp8ozDwYtQdX2UKGgGR0CTuhWRRuTBaAdN6ANoCEdAqfbspobn5nV9lChoBkdAlMU1ruYx+WgHTegDaAhHQKn3Y3/givB1fZQoaAZHQJNR0Bltj1BoB03oA2gIR0Cp+vRl6JIldX2UKGgGR0CQ6GsTWXkYaAdN6ANoCEdAqf90v0yxiXV9lChoBkdAjG/28RL9M2gHTegDaAhHQKoD7nlGPPt1fZQoaAZHQJVrpd5Y5ktoB03oA2gIR0CqBGuymhugdX2UKGgGR0CXqphlDneSaAdN6ANoCEdAqgf1+iJwbXV9lChoBkdAketMQI2OyWgHTegDaAhHQKoMp21UlzF1fZQoaAZHQJJhCZ2IO6NoB03oA2gIR0CqEReWGATadX2UKGgGR0CVSivpQk5ZaAdN6ANoCEdAqhGMlme18nV9lChoBkdAkmdnEIgNgGgHTegDaAhHQKoVLceKba11fZQoaAZHQJgv8C8vmHRoB03oA2gIR0CqGcNm+TNddX2UKGgGR0CWD7vXK8tgaAdN6ANoCEdAqh4nGEPDpHV9lChoBkdAlX28zVMEimgHTegDaAhHQKoempobn5l1fZQoaAZHQJB98psoDxNoB03oA2gIR0CqIhjfvWpZdX2UKGgGR0CTnj6fra/RaAdN6ANoCEdAqiZ5YNiH7HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (703 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1226.5488178036408, "std_reward": 185.66849560821538, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T15:32:47.344447"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a227ed17010b6047c1c1f8ec3974560d0730f2d0c06ffc50b06f988652a409a
3
+ size 2136