File size: 14,681 Bytes
258c918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf9c05ab80>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf9c05ac10>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf9c05aca0>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf9c05ad30>",
        "_build": "<function ActorCriticPolicy._build at 0x7fdf9c05adc0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7fdf9c05ae50>",
        "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdf9c05aee0>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf9c05af70>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7fdf9c05e040>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf9c05e0d0>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf9c05e160>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf9c05e1f0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7fdf9c0557b0>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 16,
    "num_timesteps": 1015808,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1677795849430511773,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJozxb3Z2kQ+P3EnPrTfgL4ODb885zg7PQAAAAAAAAAAJmOdvXFcU7v+D8A97beVvNShZTyQ5t49AACAPwAAgD8mAh0+9tk0PZKvgr5mcwO+8CiaPLTojr0AAAAAAAAAAPu7hb54So4+uUKQPt9Jkr4vb5y9iiWuPQAAAAAAAAAAxs1TPpSGHD+q1m69iqWtvt0Djz2SGNa9AAAAAAAAAAAalyC9j3pxuoq8v7Max2Yvk68qu6nAqzMAAIA/AACAP+CeH74TNqg/0BvWvmxM3L42wlC+3KwCvgAAAAAAAAAAE2kxvlYylj8WOAm/MMfcvlNQSL6IBGy+AAAAAAAAAABmYsY8PUkUu145Eru0Gb08bQxQPFBvob0AAIA/AACAP6A/Lj5o2Zc94YS3vpkS2r1bIP29unWCvQAAAAAAAAAAc4mFPfa4Drq4SSY2Zt8VMWMrfbuYm0O1AACAPwAAgD/Ncsw8FrUhPTLzzj12eke+wQwIPa5BJ70AAAAAAAAAAM2VdL0czSY/cAYuPTCZr747Ypm8DhC8PQAAAAAAAAAArd0oPolBAT4cepa+N7AWvhfsbb3zyhq8AAAAAAAAAACz6BG9jy5suvwniLnKd8u0ENYmuuZhnDgAAIA/AACAP9pvqj3xOq0/vprLPnUOw75o6Ns9frohPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.015808000000000044,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVVhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvqCFBIx8cECUhpRSlIwBbJRL7IwBdJRHQJXiV/axoqV1fZQoaAZoCWgPQwimme510vpwQJSGlFKUaBVNGgFoFkdAleNWaH9FWnV9lChoBmgJaA9DCJEsYAJ3HHFAlIaUUpRoFUvwaBZHQJXkL1AZ88d1fZQoaAZoCWgPQwha8KKvIExyQJSGlFKUaBVL8WgWR0CV5GQhOgxrdX2UKGgGaAloD0MIChNGs3JRcECUhpRSlGgVTRsBaBZHQJXlh2Pkq+d1fZQoaAZoCWgPQwiX4T/dgFFxQJSGlFKUaBVNEwFoFkdAleX/JiiItXV9lChoBmgJaA9DCOwVFtzPT3FAlIaUUpRoFUvoaBZHQJXmUpd8iOh1fZQoaAZoCWgPQwgCu5o8ZSluQJSGlFKUaBVL4mgWR0CV5mkrf+CLdX2UKGgGaAloD0MIa5xNR0CpcECUhpRSlGgVS9xoFkdAleaIKlYU4HV9lChoBmgJaA9DCAGFevoIyXFAlIaUUpRoFU0CAWgWR0CV5wwhW5pbdX2UKGgGaAloD0MIGVkyx3ICckCUhpRSlGgVTRkBaBZHQJXnSZML4N91fZQoaAZoCWgPQwgCg6RPa9BwQJSGlFKUaBVL5mgWR0CV59utwJgLdX2UKGgGaAloD0MIXwmkxC7OckCUhpRSlGgVTUkBaBZHQJXoyfzz3AV1fZQoaAZoCWgPQwiyLQPO0kVwQJSGlFKUaBVNIwFoFkdAlekV2vB7/nV9lChoBmgJaA9DCO9XAb6b5XFAlIaUUpRoFUvnaBZHQJXpQ6wMYuV1fZQoaAZoCWgPQwg8hPHTuOxgQJSGlFKUaBVN6ANoFkdAlepGcOLBK3V9lChoBmgJaA9DCCv6QzNPL3RAlIaUUpRoFU0oAWgWR0CV6okNnXd1dX2UKGgGaAloD0MIyR8MPDeUcECUhpRSlGgVS/VoFkdAletArDqGDnV9lChoBmgJaA9DCHaMKy6OdnNAlIaUUpRoFU0XAWgWR0CV63WGyon8dX2UKGgGaAloD0MIv7hUpS3ab0CUhpRSlGgVTQgBaBZHQJXr+c9W6sh1fZQoaAZoCWgPQwgZAoBjD9ZwQJSGlFKUaBVNDQFoFkdAle2KW5YozHV9lChoBmgJaA9DCOYeEr73FnNAlIaUUpRoFU0PAWgWR0CV7jICU5dXdX2UKGgGaAloD0MINL+aAwTEcUCUhpRSlGgVTS4BaBZHQJXuMh2W6bx1fZQoaAZoCWgPQwic3Vomw7BxQJSGlFKUaBVL9mgWR0CV7jsaKk2xdX2UKGgGaAloD0MImSzuP7JVb0CUhpRSlGgVTScBaBZHQJXut5C4SYh1fZQoaAZoCWgPQwgVxEDXfuVwQJSGlFKUaBVNMgFoFkdAle8cPatcOnV9lChoBmgJaA9DCDGUE+3qs3FAlIaUUpRoFUvhaBZHQJXvfefqX4V1fZQoaAZoCWgPQwh2HD9Umo1uQJSGlFKUaBVL72gWR0CV75DfWMCLdX2UKGgGaAloD0MIOGkaFE2JcUCUhpRSlGgVTSABaBZHQJXwAbn5i3J1fZQoaAZoCWgPQwjKpfELr3xxQJSGlFKUaBVNUwFoFkdAlfCenZTQ3XV9lChoBmgJaA9DCErusIkM7HFAlIaUUpRoFU0HAWgWR0CV8LPSDyvtdX2UKGgGaAloD0MIuaZAZmdjTUCUhpRSlGgVS8FoFkdAlfF/TXrdFnV9lChoBmgJaA9DCEypS8axam1AlIaUUpRoFUv+aBZHQJXxtrvb48F1fZQoaAZoCWgPQwgRVfgz/GRyQJSGlFKUaBVNAAFoFkdAlfKymqHXVnV9lChoBmgJaA9DCEOrkzNU0HBAlIaUUpRoFU0tAWgWR0CV8rHf/FR6dX2UKGgGaAloD0MIBTbn4FmocUCUhpRSlGgVS9xoFkdAlfOVk+X7cnV9lChoBmgJaA9DCNnts8pMNXFAlIaUUpRoFU01AWgWR0CV895cTrVwdX2UKGgGaAloD0MI48Yt5qdrcECUhpRSlGgVS+9oFkdAlfSxZ2ZAp3V9lChoBmgJaA9DCE7tDFNbfXBAlIaUUpRoFUvoaBZHQJX1AUg0TDh1fZQoaAZoCWgPQwiP39v052BuQJSGlFKUaBVNBAFoFkdAlfVkFB6a9nV9lChoBmgJaA9DCCtM32sIjm9AlIaUUpRoFU0RAWgWR0CV9b9HMEA6dX2UKGgGaAloD0MIfCsSE1RabkCUhpRSlGgVS99oFkdAlfbZzo2XLXV9lChoBmgJaA9DCJRMTu0M329AlIaUUpRoFU0MAWgWR0CV9vEYfnwHdX2UKGgGaAloD0MIi6ceaXAVcECUhpRSlGgVS/9oFkdAlhEmNNrTIHV9lChoBmgJaA9DCIDvNm+c1nBAlIaUUpRoFU08AWgWR0CWEbuYx+KCdX2UKGgGaAloD0MIgq59Ab3tcUCUhpRSlGgVTU0BaBZHQJYRyHRCx/x1fZQoaAZoCWgPQwjSNCiax0NyQJSGlFKUaBVL/mgWR0CWEiLxqfvndX2UKGgGaAloD0MIRKLQsm5CbkCUhpRSlGgVS/VoFkdAlhNIOpbUw3V9lChoBmgJaA9DCKjhW1j3VXBAlIaUUpRoFU0eAWgWR0CWE2p3os7NdX2UKGgGaAloD0MIqu6RzdW2ckCUhpRSlGgVTSYBaBZHQJYUxJ2+wkh1fZQoaAZoCWgPQwiphCf0+iJwQJSGlFKUaBVNCwFoFkdAlhUOo99tuXV9lChoBmgJaA9DCKGjVS3pA3NAlIaUUpRoFU0RAWgWR0CWFnOVgQYldX2UKGgGaAloD0MI9L9cixbhbkCUhpRSlGgVS/5oFkdAlhb1FtsN2HV9lChoBmgJaA9DCL5LqUtGeXBAlIaUUpRoFU1AAWgWR0CWFxi4rjHXdX2UKGgGaAloD0MIZYuk3aieckCUhpRSlGgVTSkBaBZHQJYXiQHRkVh1fZQoaAZoCWgPQwiWI2QgDxNxQJSGlFKUaBVNKgFoFkdAlhfsKXv6THV9lChoBmgJaA9DCLZN8bgovG9AlIaUUpRoFU0FAWgWR0CWGEiqhlDndX2UKGgGaAloD0MI0eY4t4n0bkCUhpRSlGgVTRQBaBZHQJYY61b7j1h1fZQoaAZoCWgPQwjiWu1hr9duQJSGlFKUaBVL/WgWR0CWGTDoyKvWdX2UKGgGaAloD0MIe6GA7eAUckCUhpRSlGgVS/loFkdAlhmechC+lHV9lChoBmgJaA9DCJ5flKA/VXBAlIaUUpRoFU0CAWgWR0CWGdUbkwN9dX2UKGgGaAloD0MIY5l+iTjXcECUhpRSlGgVS+1oFkdAlhqWj4593XV9lChoBmgJaA9DCGFUUicg8WxAlIaUUpRoFU0gAWgWR0CWGw0FKTStdX2UKGgGaAloD0MIBW9IowKZRUCUhpRSlGgVS8poFkdAlhsGtlqagHV9lChoBmgJaA9DCAxcHmtGkjRAlIaUUpRoFUvYaBZHQJYc8YFaB7N1fZQoaAZoCWgPQwgzFeKReElwQJSGlFKUaBVNDQFoFkdAlh08VpKzzHV9lChoBmgJaA9DCNyEe2WedHFAlIaUUpRoFUvraBZHQJYeL4Irvst1fZQoaAZoCWgPQwiNmq+SD2VvQJSGlFKUaBVL92gWR0CWHx7ngYP5dX2UKGgGaAloD0MInfS+8fW3cUCUhpRSlGgVTRkBaBZHQJYfoUrTYul1fZQoaAZoCWgPQwiKj0/IzkJsQJSGlFKUaBVNlQFoFkdAliAR7RfF73V9lChoBmgJaA9DCGco7ngTFXFAlIaUUpRoFU0GAWgWR0CWIBrqdH2AdX2UKGgGaAloD0MIkkCDTR3+b0CUhpRSlGgVS/5oFkdAliA2fChvi3V9lChoBmgJaA9DCEbtfhVgqXJAlIaUUpRoFUvraBZHQJYg7ovBacJ1fZQoaAZoCWgPQwhfJLTl3KxwQJSGlFKUaBVL6GgWR0CWIfSJ0nw5dX2UKGgGaAloD0MIIQIOoYpeckCUhpRSlGgVTSQBaBZHQJYh9t0mtyR1fZQoaAZoCWgPQwjS4SGM37txQJSGlFKUaBVL7WgWR0CWIpKdQO4HdX2UKGgGaAloD0MIVrjlIylAUkCUhpRSlGgVS+5oFkdAliKi8OCoTHV9lChoBmgJaA9DCDZ1HhX/BXJAlIaUUpRoFU01AWgWR0CWIsfG+9J0dX2UKGgGaAloD0MIec2rOqtQcUCUhpRSlGgVS99oFkdAliQRYvFm4HV9lChoBmgJaA9DCOffLvv1bXNAlIaUUpRoFU1PAWgWR0CWJDWWhRIjdX2UKGgGaAloD0MIYI+JlOYfcECUhpRSlGgVS9toFkdAlic3AuZkTnV9lChoBmgJaA9DCIpYxLBD/XBAlIaUUpRoFU0ZAWgWR0CWJ16xgRbsdX2UKGgGaAloD0MI1/fhICF3U0CUhpRSlGgVTegDaBZHQJYn8ZsKsuF1fZQoaAZoCWgPQwhUck7sIaxsQJSGlFKUaBVL9WgWR0CWKA2mHgxbdX2UKGgGaAloD0MImE9WDJekcUCUhpRSlGgVS/hoFkdAligf8qFyrHV9lChoBmgJaA9DCPjhICFKLHNAlIaUUpRoFU0VAWgWR0CWKKTWoWHldX2UKGgGaAloD0MILLmKxW+cckCUhpRSlGgVS/JoFkdAlijOANG3F3V9lChoBmgJaA9DCBHg9C5eB3NAlIaUUpRoFUv6aBZHQJYqDZ9NN8F1fZQoaAZoCWgPQwhNEeD0rsFuQJSGlFKUaBVNGAFoFkdAlisUCV8kU3V9lChoBmgJaA9DCE33OqkvIXJAlIaUUpRoFU14AWgWR0CWK10D2alUdX2UKGgGaAloD0MICWtj7IRacECUhpRSlGgVTRIBaBZHQJYrix4Y77t1fZQoaAZoCWgPQwi0ykxp/U5yQJSGlFKUaBVNHQFoFkdAliv84YJmd3V9lChoBmgJaA9DCKA3FamwZHBAlIaUUpRoFU0yAWgWR0CWLGDZlFtsdX2UKGgGaAloD0MIExCTcCHVckCUhpRSlGgVS/9oFkdAlixoP9UCJXV9lChoBmgJaA9DCIBKlSh763JAlIaUUpRoFU0VAWgWR0CWLRZKFqSHdX2UKGgGaAloD0MInplgOFddZECUhpRSlGgVTR0CaBZHQJYufkzXSSh1fZQoaAZoCWgPQwhLyAc9m6xvQJSGlFKUaBVL7GgWR0CWLqyXlbNbdX2UKGgGaAloD0MIXYyBdZyucECUhpRSlGgVTRgBaBZHQJYv5QSBbwB1fZQoaAZoCWgPQwhsCI7LeDtzQJSGlFKUaBVL82gWR0CWMA5ggHNYdX2UKGgGaAloD0MIm3YxzXTYcUCUhpRSlGgVTREBaBZHQJYwStSydFx1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 248,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}