DLight1551 commited on
Commit
cdc6e7e
1 Parent(s): 4109b73
added_tokens.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|action_end|>": 92547,
3
+ "<|action_start|>": 92546,
4
+ "<|im_end|>": 92545,
5
+ "<|im_start|>": 92544,
6
+ "<|interpreter|>": 92548,
7
+ "<|plugin|>": 92549
8
+ }
build_mlp.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import re
4
+ import math
5
+ from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
6
+
7
+
8
+ def build_vision_tower():
9
+ vision_tower = 'internlm/internlm-xcomposer2d5-clip'
10
+ return CLIPVisionTower(vision_tower)
11
+
12
+
13
+ def build_vision_projector(input_dim = 4096):
14
+ projector_type = 'mlp2x_gelu'
15
+ mm_hidden_size = input_dim
16
+ mid_hidden_size = 4096
17
+ hidden_size = 4096
18
+
19
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
20
+ if mlp_gelu_match:
21
+ mlp_depth = int(mlp_gelu_match.group(1))
22
+ modules = [nn.Linear(mm_hidden_size, mid_hidden_size)]
23
+ for _ in range(1, mlp_depth):
24
+ modules.append(nn.GELU())
25
+ modules.append(nn.Linear(mid_hidden_size, mid_hidden_size))
26
+
27
+ return nn.Sequential(*modules)
28
+
29
+ if projector_type == 'identity':
30
+ return IdentityMap()
31
+
32
+ raise ValueError(f'Unknown projector type: {projector_type}')
33
+
34
+ class IdentityMap(nn.Module):
35
+ def __init__(self):
36
+ super().__init__()
37
+
38
+ def forward(self, x, *args, **kwargs):
39
+ return x
40
+
41
+ @property
42
+ def config(self):
43
+ return {"mm_projector_type": 'identity'}
44
+
45
+
46
+ class CLIPVisionTower(nn.Module):
47
+ def __init__(self, vision_tower):
48
+ super().__init__()
49
+
50
+ self.is_loaded = False
51
+
52
+ self.vision_tower_name = vision_tower
53
+ #self.conv_dim = 8192
54
+ #self.conv = torch.nn.Conv2d(1024, self.conv_dim,3,2,1)
55
+ self.select_layer = -1
56
+ self.select_feature = 'patch'
57
+ self.load_model()
58
+
59
+ def load_model(self):
60
+ self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
61
+ self.vision_tower.requires_grad_(False)
62
+
63
+ self.is_loaded = True
64
+
65
+ def resize_pos(self):
66
+ print ('Dummy Resized')
67
+
68
+ def feature_select(self, image_forward_outs):
69
+ image_features = image_forward_outs.hidden_states[self.select_layer]
70
+ if self.select_feature == 'patch':
71
+ image_features = image_features[:, 1:]
72
+ elif self.select_feature == 'cls_patch':
73
+ image_features = image_features
74
+ else:
75
+ raise ValueError(f'Unexpected select feature: {self.select_feature}')
76
+ return image_features
77
+
78
+ def forward(self, images, glb_GN, sub_GN):
79
+ if not self.is_loaded:
80
+ self.load_model()
81
+ assert type(images) is list
82
+ shapes = []
83
+ input_imgs = []
84
+ for img in images:
85
+ _, C, H, W = img.shape
86
+ shapes.append([H//560, W//560])
87
+ sub_img = img.reshape(1,3,H//560,560,W//560,560).permute(0,2,4,1,3,5).reshape(-1,3,560,560).contiguous()
88
+ glb_img = torch.nn.functional.interpolate(img.float(), size=(560,560), mode='bicubic',).to(sub_img.dtype)
89
+ input_imgs.append(glb_img)
90
+ input_imgs.append(sub_img)
91
+ input_imgs = torch.cat(input_imgs, dim=0)
92
+
93
+ image_forward_outs = self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
94
+ image_features = self.feature_select(image_forward_outs).to(input_imgs.dtype) ### B*?, N, C
95
+ _, N, C = image_features.shape
96
+ H = int(math.sqrt(N))
97
+ assert N == 40 ** 2
98
+
99
+ output_imgs = []
100
+ output_len = []
101
+ for [h, w] in shapes:
102
+ B_ = h*w
103
+ glb_img = image_features[:1] ### 1, N, C
104
+ glb_img = glb_img.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
105
+ temp_glb_GN = sub_GN.repeat(1, H//2, 1, 1)
106
+ glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
107
+
108
+ sub_img = image_features[1:1+B_] ### ?, N, C
109
+ sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
110
+ sub_img = sub_img.reshape(1, h, w, 20, 20, -1).permute(0,1,3,2,4,5).reshape(1,h*20,w*20,4*C)
111
+ temp_sub_GN = sub_GN.repeat(1, h*20, 1, 1)
112
+ sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
113
+
114
+ output_imgs.append(torch.cat([glb_img, glb_GN, sub_img], dim=1))
115
+ temp_len = int((h*w+1)*400 + 1 + (h+1)*20)
116
+ assert temp_len == output_imgs[-1].shape[1]
117
+ output_len.append(temp_len)
118
+
119
+ image_features = image_features[1+h*w:]
120
+
121
+ output_imgs = torch.cat(output_imgs, dim=1)
122
+
123
+ return output_imgs, output_len
124
+
125
+ @property
126
+ def dummy_feature(self):
127
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
128
+
129
+ @property
130
+ def dtype(self):
131
+ return self.vision_tower.dtype
132
+
133
+ @property
134
+ def device(self):
135
+ return self.vision_tower.device
136
+
137
+ @property
138
+ def config(self):
139
+ if self.is_loaded:
140
+ return self.vision_tower.config
141
+ else:
142
+ return self.cfg_only
143
+
144
+ @property
145
+ def hidden_size(self):
146
+ return self.config.hidden_size
147
+
148
+ @property
149
+ def num_patches(self):
150
+ return (self.config.image_size // self.config.patch_size) ** 2
151
+
152
+ class PLoRA(nn.Linear):
153
+ def __init__(self,
154
+ in_features: int,
155
+ out_features: int,
156
+ bias: bool = True,
157
+ device=None,
158
+ dtype=None,
159
+ lora_r=8,
160
+ lora_alpha=16,
161
+ lora_dropout=0.05,
162
+ lora_len=0,
163
+ **kwargs) -> None:
164
+ super().__init__(in_features, out_features, bias, device, dtype)
165
+ self.lora_r = lora_r
166
+ self.lora_alpha = lora_alpha
167
+ self.lora_len = lora_len
168
+ if lora_dropout > 0.:
169
+ self.lora_dropout = nn.Dropout(p=lora_dropout)
170
+ else:
171
+ self.lora_dropout = lambda x: x
172
+ self.lora_scaling = self.lora_alpha / self.lora_r
173
+
174
+ self.Plora_A = nn.Linear(in_features,
175
+ self.lora_r,
176
+ bias=False,
177
+ device=device,
178
+ dtype=dtype)
179
+ self.Plora_B = nn.Linear(self.lora_r,
180
+ out_features,
181
+ bias=False,
182
+ device=device,
183
+ dtype=dtype)
184
+
185
+ self.reset_parameters()
186
+
187
+ def reset_parameters(self):
188
+ if hasattr(self, 'lora_A'):
189
+ # initialize A the same way as the default for nn.Linear and B to zero
190
+ nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
191
+ nn.init.zeros_(self.lora_B.weight)
192
+ #print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
193
+
194
+ def forward(self, x, im_mask=None, infer_mode='base'):
195
+ B, N, C = x.shape
196
+ im_mask = im_mask.view(-1)
197
+ x = x.reshape(-1, C)
198
+ res = super().forward(x)
199
+ if im_mask is not None:
200
+ if torch.sum(im_mask) > 0:
201
+ part_x = x[im_mask]
202
+ res[im_mask] += self.Plora_B(self.Plora_A(
203
+ self.lora_dropout(part_x))) * self.lora_scaling
204
+ else:
205
+ part_x = x[:1]
206
+ res[:1] += self.Plora_B(self.Plora_A(
207
+ self.lora_dropout(part_x))) * 0
208
+
209
+ return res.reshape(B, N, -1)
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/petrelfs/dongxiaoyi/gittest/temp_model/internlm-xcomposer2d5-7b",
3
+ "architectures": [
4
+ "InternLMXComposer2ForCausalLM"
5
+ ],
6
+ "attn_implementation": "flash_attention_2",
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
9
+ "AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
10
+ "AutoModelForCausalLM": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM"
11
+ },
12
+ "bias": false,
13
+ "bos_token_id": 1,
14
+ "eos_token_id": 2,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_length": 16384,
20
+ "max_position_embeddings": 24576,
21
+ "model_type": "internlm2",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 8,
25
+ "pad_token_id": 2,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": {
28
+ "type": "dynamic",
29
+ "factor": 2.0
30
+ },
31
+ "rope_theta": 1000000,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.33.1",
35
+ "use_cache": false,
36
+ "vocab_size": 92544
37
+ }
configuration_internlm_xcomposer2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM2 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ class InternLMXcomposer2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = "internlm2"
75
+ _auto_class = "AutoConfig"
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act="silu",
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation="flash_attention_2",
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = "flash_attention_2"
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
141
+ f"got {self.rope_scaling}"
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get("type", None)
144
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 16384,
6
+ "pad_token_id": 2,
7
+ "transformers_version": "4.33.1",
8
+ "use_cache": false
9
+ }
ixc_utils.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import numpy as np
4
+ import torchvision
5
+ from urllib.request import urlopen
6
+ from PIL import Image, ImageDraw, ImageFont
7
+ from torchvision.transforms.functional import InterpolationMode
8
+ import torchvision.transforms as transforms
9
+ from decord import VideoReader
10
+
11
+ def get_font():
12
+ truetype_url = 'https://huggingface.co/internlm/internlm-xcomposer2d5-7b/resolve/main/SimHei.ttf?download=true'
13
+ ff = urlopen(truetype_url)
14
+ font = ImageFont.truetype(ff, size=40)
15
+ return font
16
+
17
+ def padding_336(b, pad=336):
18
+ width, height = b.size
19
+ tar = int(np.ceil(height / pad) * pad)
20
+ top_padding = 0 # int((tar - height)/2)
21
+ bottom_padding = tar - height - top_padding
22
+ left_padding = 0
23
+ right_padding = 0
24
+ b = transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
25
+
26
+ return b
27
+
28
+ def Image_transform(img, hd_num=25):
29
+ width, height = img.size
30
+ trans = False
31
+ if width < height:
32
+ img = img.transpose(Image.TRANSPOSE)
33
+ trans = True
34
+ width, height = img.size
35
+ ratio = (width/ height)
36
+ scale = 1
37
+ while scale*np.ceil(scale/ratio) <= hd_num:
38
+ scale += 1
39
+ scale -= 1
40
+ scale = min(np.ceil(width / 560), scale)
41
+ new_w = int(scale * 560)
42
+ new_h = int(new_w / ratio)
43
+ #print (scale, f'{height}/{new_h}, {width}/{new_w}')
44
+
45
+ img = transforms.functional.resize(img, [new_h, new_w],)
46
+ img = padding_336(img, 560)
47
+ width, height = img.size
48
+ if trans:
49
+ img = img.transpose(Image.TRANSPOSE)
50
+
51
+ return img
52
+
53
+
54
+ def Video_transform(img, hd_num=25):
55
+ width, height = img.size
56
+ trans = False
57
+ if width < height:
58
+ img = img.transpose(Image.TRANSPOSE)
59
+ trans = True
60
+ width, height = img.size
61
+ ratio = (width/ height)
62
+ scale = 1
63
+ new_h = int(scale * 560)
64
+ new_w = int(new_h * ratio)
65
+ #print (new_h, new_w)
66
+
67
+ img = transforms.functional.resize(img, [new_h, new_w],)
68
+ img = img.transpose(Image.TRANSPOSE)
69
+ img = padding_336(img, 560)
70
+ width, height = img.size
71
+ if not trans:
72
+ img = img.transpose(Image.TRANSPOSE)
73
+
74
+ return img
75
+
76
+ def frame2img(imgs, font):
77
+ new_imgs = []
78
+ for img in imgs:
79
+ w, h = img.size
80
+ scale = w/h
81
+ if w > h:
82
+ new_w = 560 * 2
83
+ new_h = int(560 * 2 / scale)
84
+ else:
85
+ new_w = int(560 * 2 * scale)
86
+ new_h = 560 * 2
87
+ img = transforms.functional.resize(img, [new_h, new_w],)
88
+ new_imgs.append(img)
89
+ imgs = new_imgs
90
+ new_w = 0
91
+ new_h = 0
92
+ pad = 40
93
+ if w > h:
94
+ for im in imgs:
95
+ w,h = im.size
96
+ new_w = max(new_w, w)
97
+ new_h += h + 10 + pad
98
+ new_img = Image.new('RGB', (new_w, new_h), 'white')
99
+ draw = ImageDraw.Draw(new_img)
100
+ curr_h = 0
101
+ for idx, im in enumerate(imgs):
102
+ w,h = im.size
103
+ new_img.paste(im, (0, pad + curr_h))
104
+ draw.text((0, curr_h ), f'<IMAGE {idx}>', font=font, fill='black')
105
+ if idx + 1 < len(imgs):
106
+ draw.line([(0, pad +curr_h + h +5), (new_w, pad +curr_h + h +5)], fill = 'black', width=2)
107
+ curr_h += h + 10 + pad
108
+ #print (new_w, new_h)
109
+ else:
110
+ for im in imgs:
111
+ w,h = im.size
112
+ new_w += w + 10
113
+ new_h = max(new_h, h)
114
+ new_h += pad
115
+ new_img = Image.new('RGB', (new_w, new_h), 'white')
116
+ draw = ImageDraw.Draw(new_img)
117
+ curr_w = 0
118
+ for idx, im in enumerate(imgs):
119
+ w,h = im.size
120
+ new_img.paste(im, (curr_w, pad))
121
+ draw.text((curr_w, 0), f'<IMAGE {idx}>', font=font, fill='black')
122
+ if idx + 1 < len(imgs):
123
+ draw.line([(curr_w + w + 5, 0), (curr_w + w + 5, new_h)], fill = 'black', width=2)
124
+ curr_w += w + 10
125
+ return new_img
126
+
127
+ def load_video(video_path, num_frm=32, start=None, end=None):
128
+ vid = VideoReader(video_path, num_threads=1)
129
+ fps = vid.get_avg_fps()
130
+ t_stride = int(round(float(fps) / int(1)))
131
+ start_idx = 0 if start is None else start
132
+ end_idx = len(vid) if end is None else end
133
+ all_pos = list(range(start_idx, end_idx, t_stride))
134
+ try:
135
+ images = [vid[i].numpy() for i in all_pos]
136
+ except:
137
+ images = [vid[i].asnumpy() for i in all_pos]
138
+ if len(images) > num_frm:
139
+ num_frm = min(num_frm, len(images))
140
+ step_size = len(images) / (num_frm + 1)
141
+ indices = [int(i*step_size) for i in range(num_frm)]
142
+ images = [images[i] for i in indices]
143
+ images = [Image.fromarray(arr) for arr in images]
144
+ return images
145
+
modeling_internlm2.py ADDED
@@ -0,0 +1,997 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ import copy
22
+ import numpy as np
23
+ from typing import List, Optional, Tuple, Union
24
+ from torchvision import transforms
25
+ from torchvision.transforms.functional import InterpolationMode
26
+ from PIL import Image
27
+
28
+ import torch
29
+ import torch.nn.functional as F
30
+ import torch.utils.checkpoint
31
+ from einops import rearrange
32
+ from torch import nn
33
+ from transformers.activations import ACT2FN
34
+ from transformers.modeling_outputs import (
35
+ BaseModelOutputWithPast,
36
+ CausalLMOutputWithPast,
37
+ SequenceClassifierOutputWithPast,
38
+ )
39
+ from transformers.modeling_utils import PreTrainedModel
40
+ from transformers.utils import (
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ logging,
44
+ replace_return_docstrings,
45
+ )
46
+
47
+ try:
48
+ from transformers.generation.streamers import BaseStreamer
49
+ except: # noqa # pylint: disable=bare-except
50
+ BaseStreamer = None
51
+
52
+ from .build_mlp import PLoRA
53
+ from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config as InternLM2Config
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+ _CONFIG_FOR_DOC = "InternLM2Config"
58
+
59
+ flash_attn_func, flash_attn_varlen_func = None, None
60
+ pad_input, index_first_axis, unpad_input = None, None, None
61
+ def _import_flash_attn():
62
+ global flash_attn_func, flash_attn_varlen_func
63
+ global pad_input, index_first_axis, unpad_input
64
+ try:
65
+ from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
66
+ from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
67
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
68
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
69
+ except ImportError:
70
+ raise ImportError("flash_attn is not installed.")
71
+
72
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
73
+ def _get_unpad_data(attention_mask):
74
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
75
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
76
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
77
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
78
+ return (
79
+ indices,
80
+ cu_seqlens,
81
+ max_seqlen_in_batch,
82
+ )
83
+
84
+
85
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
86
+ def _make_causal_mask(
87
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
88
+ ):
89
+ """
90
+ Make causal mask used for bi-directional self-attention.
91
+ """
92
+ bsz, tgt_len = input_ids_shape
93
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
94
+ mask_cond = torch.arange(mask.size(-1), device=device)
95
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
96
+ mask = mask.to(dtype)
97
+
98
+ if past_key_values_length > 0:
99
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
100
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
101
+
102
+
103
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
104
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
105
+ """
106
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
107
+ """
108
+ bsz, src_len = mask.size()
109
+ tgt_len = tgt_len if tgt_len is not None else src_len
110
+
111
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
112
+
113
+ inverted_mask = 1.0 - expanded_mask
114
+
115
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
116
+
117
+
118
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
119
+ class InternLM2RMSNorm(nn.Module):
120
+ def __init__(self, hidden_size, eps=1e-6):
121
+ """
122
+ InternLM2RMSNorm is equivalent to T5LayerNorm
123
+ """
124
+ super().__init__()
125
+ self.weight = nn.Parameter(torch.ones(hidden_size))
126
+ self.variance_epsilon = eps
127
+
128
+ def forward(self, hidden_states):
129
+ input_dtype = hidden_states.dtype
130
+ hidden_states = hidden_states.to(torch.float32)
131
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
132
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
133
+ return self.weight * hidden_states.to(input_dtype)
134
+
135
+
136
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
137
+ class InternLM2RotaryEmbedding(nn.Module):
138
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
139
+ super().__init__()
140
+
141
+ self.dim = dim
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.base = base
144
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
145
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
146
+
147
+ # Build here to make `torch.jit.trace` work.
148
+ self._set_cos_sin_cache(
149
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
150
+ )
151
+
152
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
153
+ self.max_seq_len_cached = seq_len
154
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
155
+
156
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
157
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
158
+ emb = torch.cat((freqs, freqs), dim=-1)
159
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
160
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
161
+
162
+ def forward(self, x, seq_len=None):
163
+ # x: [bs, num_attention_heads, seq_len, head_size]
164
+ if seq_len > self.max_seq_len_cached:
165
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
166
+
167
+ return (
168
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
169
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
170
+ )
171
+
172
+
173
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
174
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
175
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
176
+
177
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
178
+ self.scaling_factor = scaling_factor
179
+ super().__init__(dim, max_position_embeddings, base, device)
180
+
181
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
182
+ self.max_seq_len_cached = seq_len
183
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
184
+ t = t / self.scaling_factor
185
+
186
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
187
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
188
+ emb = torch.cat((freqs, freqs), dim=-1)
189
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
190
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
191
+
192
+
193
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
194
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
195
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
196
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
197
+ """
198
+
199
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
200
+ self.scaling_factor = scaling_factor
201
+ super().__init__(dim, max_position_embeddings, base, device)
202
+
203
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
204
+ self.max_seq_len_cached = seq_len
205
+
206
+ if seq_len > self.max_position_embeddings:
207
+ base = self.base * (
208
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
209
+ ) ** (self.dim / (self.dim - 2))
210
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
211
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
212
+
213
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
214
+
215
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
216
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
217
+ emb = torch.cat((freqs, freqs), dim=-1)
218
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
219
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
220
+
221
+
222
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
223
+ def rotate_half(x):
224
+ """Rotates half the hidden dims of the input."""
225
+ x1 = x[..., : x.shape[-1] // 2]
226
+ x2 = x[..., x.shape[-1] // 2 :]
227
+ return torch.cat((-x2, x1), dim=-1)
228
+
229
+
230
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
231
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
232
+ """Applies Rotary Position Embedding to the query and key tensors."""
233
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
234
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
235
+ q_embed = (q * cos) + (rotate_half(q) * sin)
236
+ k_embed = (k * cos) + (rotate_half(k) * sin)
237
+ return q_embed, k_embed
238
+
239
+
240
+ class InternLM2MLP(nn.Module):
241
+ def __init__(self, config):
242
+ super().__init__()
243
+ self.config = config
244
+ self.hidden_size = config.hidden_size
245
+ self.intermediate_size = config.intermediate_size
246
+ #self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
247
+ #self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
248
+ #self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
249
+
250
+ self.w1 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
251
+ lora_r=256, lora_alpha=256, lora_len=1225)
252
+ self.w3 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
253
+ lora_r=256, lora_alpha=256, lora_len=1225)
254
+ self.w2 = PLoRA(self.intermediate_size, self.hidden_size, bias=False,
255
+ lora_r=256, lora_alpha=256, lora_len=1225)
256
+
257
+ self.act_fn = ACT2FN[config.hidden_act]
258
+
259
+ def forward(self, x, im_mask, infer_mode):
260
+ down_proj = self.w2(self.act_fn(self.w1(x, im_mask, infer_mode)) * self.w3(x, im_mask, infer_mode), im_mask, infer_mode)
261
+
262
+ return down_proj
263
+
264
+
265
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
266
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
267
+ """
268
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
269
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
270
+ """
271
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
272
+ if n_rep == 1:
273
+ return hidden_states
274
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
275
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
276
+
277
+
278
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
279
+ class InternLM2Attention(nn.Module):
280
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
281
+
282
+ def __init__(self, config: InternLM2Config):
283
+ super().__init__()
284
+ self.config = config
285
+ self.hidden_size = config.hidden_size
286
+ self.num_heads = config.num_attention_heads
287
+ self.head_dim = self.hidden_size // self.num_heads
288
+ self.num_key_value_heads = config.num_key_value_heads
289
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
290
+ self.max_position_embeddings = config.max_position_embeddings
291
+ self.is_causal = True
292
+
293
+ if (self.head_dim * self.num_heads) != self.hidden_size:
294
+ raise ValueError(
295
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
296
+ f" and `num_heads`: {self.num_heads})."
297
+ )
298
+
299
+ #self.wqkv = nn.Linear(
300
+ self.wqkv = PLoRA(
301
+ self.hidden_size,
302
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
303
+ bias=config.bias,
304
+ lora_r=256, lora_alpha=256, lora_len=1225
305
+ )
306
+
307
+ #self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self.wo = PLoRA(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias,
309
+ lora_r=256, lora_alpha=256, lora_len=1225)
310
+ self._init_rope()
311
+
312
+ def _init_rope(self):
313
+ if self.config.rope_scaling is None:
314
+ self.rotary_emb = InternLM2RotaryEmbedding(
315
+ self.head_dim,
316
+ max_position_embeddings=self.max_position_embeddings,
317
+ base=self.config.rope_theta,
318
+ )
319
+ else:
320
+ scaling_type = self.config.rope_scaling["type"]
321
+ scaling_factor = self.config.rope_scaling["factor"]
322
+ if scaling_type == "dynamic":
323
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
324
+ self.head_dim,
325
+ max_position_embeddings=self.max_position_embeddings,
326
+ base=self.config.rope_theta,
327
+ scaling_factor=scaling_factor,
328
+ )
329
+ elif scaling_type == "linear":
330
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
331
+ self.head_dim,
332
+ max_position_embeddings=self.max_position_embeddings,
333
+ base=self.config.rope_theta,
334
+ scaling_factor=scaling_factor,
335
+ )
336
+ else:
337
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
338
+ return self.rotary_emb
339
+
340
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
341
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
342
+
343
+ def forward(
344
+ self,
345
+ hidden_states: torch.Tensor,
346
+ attention_mask: Optional[torch.Tensor] = None,
347
+ position_ids: Optional[torch.LongTensor] = None,
348
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
349
+ output_attentions: bool = False,
350
+ use_cache: bool = False,
351
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
352
+ infer_mode: str = 'base',
353
+ **kwargs,
354
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
355
+ if "padding_mask" in kwargs:
356
+ warnings.warn(
357
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
358
+ "Please make sure use `attention_mask` instead.`"
359
+ )
360
+
361
+ bsz, q_len, _ = hidden_states.size()
362
+
363
+ qkv_states = self.wqkv(hidden_states, im_mask, infer_mode)
364
+
365
+ qkv_states = rearrange(
366
+ qkv_states,
367
+ "b q (h gs d) -> b q h gs d",
368
+ gs=2 + self.num_key_value_groups,
369
+ d=self.head_dim,
370
+ )
371
+
372
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
373
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
374
+ key_states = qkv_states[..., -2, :]
375
+ value_states = qkv_states[..., -1, :]
376
+
377
+ query_states = query_states.transpose(1, 2)
378
+ key_states = key_states.transpose(1, 2)
379
+ value_states = value_states.transpose(1, 2)
380
+
381
+ kv_seq_len = key_states.shape[-2]
382
+ if past_key_value is not None:
383
+ kv_seq_len += past_key_value[0].shape[-2]
384
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
385
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
386
+
387
+ if past_key_value is not None:
388
+ # reuse k, v, self_attention
389
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
390
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
391
+
392
+ past_key_value = (key_states, value_states) if use_cache else None
393
+
394
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
395
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
396
+
397
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
398
+
399
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
400
+ raise ValueError(
401
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
402
+ f" {attn_weights.size()}"
403
+ )
404
+
405
+ if attention_mask is not None:
406
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
407
+ raise ValueError(
408
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
409
+ )
410
+ attn_weights = attn_weights + attention_mask
411
+
412
+ # upcast attention to fp32
413
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
414
+ attn_output = torch.matmul(attn_weights, value_states)
415
+
416
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
417
+ raise ValueError(
418
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
419
+ f" {attn_output.size()}"
420
+ )
421
+
422
+ attn_output = attn_output.transpose(1, 2).contiguous()
423
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
424
+
425
+ attn_output = self.wo(attn_output, im_mask, infer_mode)
426
+
427
+ if not output_attentions:
428
+ attn_weights = None
429
+
430
+ return attn_output, attn_weights, past_key_value
431
+
432
+
433
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
434
+ class InternLM2FlashAttention2(InternLM2Attention):
435
+ """
436
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
437
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
438
+ flash attention and deal with padding tokens in case the input contains any of them.
439
+ """
440
+
441
+ def forward(
442
+ self,
443
+ hidden_states: torch.Tensor,
444
+ attention_mask: Optional[torch.LongTensor] = None,
445
+ position_ids: Optional[torch.LongTensor] = None,
446
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
447
+ output_attentions: bool = False,
448
+ use_cache: bool = False,
449
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
450
+ infer_mode: str = 'base',
451
+ **kwargs,
452
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
453
+ # InternLM2FlashAttention2 attention does not support output_attentions
454
+ if "padding_mask" in kwargs:
455
+ warnings.warn(
456
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
457
+ "Please make sure use `attention_mask` instead.`"
458
+ )
459
+
460
+ # overwrite attention_mask with padding_mask
461
+ attention_mask = kwargs.pop("padding_mask")
462
+
463
+ output_attentions = False
464
+
465
+ bsz, q_len, _ = hidden_states.size()
466
+
467
+ qkv_states = self.wqkv(hidden_states, im_mask, infer_mode)
468
+
469
+ qkv_states = rearrange(
470
+ qkv_states,
471
+ "b q (h gs d) -> b q h gs d",
472
+ gs=2 + self.num_key_value_groups,
473
+ d=self.head_dim,
474
+ )
475
+
476
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
477
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
478
+ key_states = qkv_states[..., -2, :]
479
+ value_states = qkv_states[..., -1, :]
480
+
481
+ query_states = query_states.transpose(1, 2)
482
+ key_states = key_states.transpose(1, 2)
483
+ value_states = value_states.transpose(1, 2)
484
+
485
+ kv_seq_len = key_states.shape[-2]
486
+ if past_key_value is not None:
487
+ kv_seq_len += past_key_value[0].shape[-2]
488
+
489
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
490
+
491
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
492
+
493
+ if past_key_value is not None:
494
+ # reuse k, v, self_attention
495
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
496
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
497
+
498
+ past_key_value = (key_states, value_states) if use_cache else None
499
+
500
+ query_states = query_states.transpose(1, 2)
501
+ key_states = key_states.transpose(1, 2)
502
+ value_states = value_states.transpose(1, 2)
503
+
504
+ attn_output = self._flash_attention_forward(
505
+ query_states, key_states, value_states, attention_mask, q_len
506
+ )
507
+
508
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
509
+ attn_output = self.wo(attn_output, im_mask, infer_mode)
510
+
511
+ if not output_attentions:
512
+ attn_weights = None
513
+
514
+ return attn_output, attn_weights, past_key_value
515
+
516
+ def _flash_attention_forward(
517
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
518
+ ):
519
+ """
520
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
521
+ first unpad the input, then computes the attention scores and pad the final attention scores.
522
+
523
+ Args:
524
+ query_states (`torch.Tensor`):
525
+ Input query states to be passed to Flash Attention API
526
+ key_states (`torch.Tensor`):
527
+ Input key states to be passed to Flash Attention API
528
+ value_states (`torch.Tensor`):
529
+ Input value states to be passed to Flash Attention API
530
+ attention_mask (`torch.Tensor`):
531
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
532
+ position of padding tokens and 1 for the position of non-padding tokens.
533
+ dropout (`int`, *optional*):
534
+ Attention dropout
535
+ softmax_scale (`float`, *optional*):
536
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
537
+ """
538
+ # Contains at least one padding token in the sequence
539
+ causal = self.is_causal and query_length != 1
540
+ if attention_mask is not None:
541
+ batch_size = query_states.shape[0]
542
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
543
+ query_states, key_states, value_states, attention_mask, query_length
544
+ )
545
+
546
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
547
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
548
+
549
+ attn_output_unpad = flash_attn_varlen_func(
550
+ query_states,
551
+ key_states,
552
+ value_states,
553
+ cu_seqlens_q=cu_seqlens_q,
554
+ cu_seqlens_k=cu_seqlens_k,
555
+ max_seqlen_q=max_seqlen_in_batch_q,
556
+ max_seqlen_k=max_seqlen_in_batch_k,
557
+ dropout_p=dropout,
558
+ softmax_scale=softmax_scale,
559
+ causal=causal,
560
+ )
561
+
562
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
563
+ else:
564
+ attn_output = flash_attn_func(
565
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
566
+ )
567
+
568
+ return attn_output
569
+
570
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
571
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
572
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
573
+
574
+ key_layer = index_first_axis(
575
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
576
+ )
577
+ value_layer = index_first_axis(
578
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
579
+ )
580
+
581
+ if query_length == kv_seq_len:
582
+ query_layer = index_first_axis(
583
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
584
+ )
585
+ cu_seqlens_q = cu_seqlens_k
586
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
587
+ indices_q = indices_k
588
+ elif query_length == 1:
589
+ max_seqlen_in_batch_q = 1
590
+ cu_seqlens_q = torch.arange(
591
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
592
+ ) # There is a memcpy here, that is very bad.
593
+ indices_q = cu_seqlens_q[:-1]
594
+ query_layer = query_layer.squeeze(1)
595
+ else:
596
+ # The -q_len: slice assumes left padding.
597
+ attention_mask = attention_mask[:, -query_length:]
598
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
599
+
600
+ return (
601
+ query_layer,
602
+ key_layer,
603
+ value_layer,
604
+ indices_q.to(torch.int64),
605
+ (cu_seqlens_q, cu_seqlens_k),
606
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
607
+ )
608
+
609
+ INTERNLM2_ATTENTION_CLASSES = {
610
+ "eager": InternLM2Attention,
611
+ "flash_attention_2": InternLM2FlashAttention2,
612
+ }
613
+
614
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
615
+ class InternLM2DecoderLayer(nn.Module):
616
+ def __init__(self, config: InternLM2Config):
617
+ super().__init__()
618
+ self.hidden_size = config.hidden_size
619
+
620
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
621
+
622
+ self.feed_forward = InternLM2MLP(config)
623
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
624
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
625
+
626
+ def forward(
627
+ self,
628
+ hidden_states: torch.Tensor,
629
+ attention_mask: Optional[torch.Tensor] = None,
630
+ position_ids: Optional[torch.LongTensor] = None,
631
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
632
+ output_attentions: Optional[bool] = False,
633
+ use_cache: Optional[bool] = False,
634
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
635
+ infer_mode: str='base',
636
+ **kwargs,
637
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
638
+ """
639
+ Args:
640
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
641
+ attention_mask (`torch.FloatTensor`, *optional*):
642
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
643
+ query_sequence_length, key_sequence_length)` if default attention is used.
644
+ output_attentions (`bool`, *optional*):
645
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
646
+ returned tensors for more detail.
647
+ use_cache (`bool`, *optional*):
648
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
649
+ (see `past_key_values`).
650
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
651
+ """
652
+ if "padding_mask" in kwargs:
653
+ warnings.warn(
654
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
655
+ "Please make sure use `attention_mask` instead.`"
656
+ )
657
+
658
+ residual = hidden_states
659
+
660
+ hidden_states = self.attention_norm(hidden_states)
661
+
662
+ # Self Attention
663
+ hidden_states, self_attn_weights, present_key_value = self.attention(
664
+ hidden_states=hidden_states,
665
+ attention_mask=attention_mask,
666
+ position_ids=position_ids,
667
+ past_key_value=past_key_value,
668
+ output_attentions=output_attentions,
669
+ use_cache=use_cache,
670
+ im_mask=im_mask,
671
+ infer_mode=infer_mode,
672
+ **kwargs,
673
+ )
674
+ hidden_states = residual + hidden_states
675
+
676
+ # Fully Connected
677
+ residual = hidden_states
678
+ hidden_states = self.ffn_norm(hidden_states)
679
+ hidden_states = self.feed_forward(hidden_states, im_mask, infer_mode)
680
+ hidden_states = residual + hidden_states
681
+
682
+ outputs = (hidden_states,)
683
+
684
+ if output_attentions:
685
+ outputs += (self_attn_weights,)
686
+
687
+ if use_cache:
688
+ outputs += (present_key_value,)
689
+
690
+ return outputs
691
+
692
+
693
+ InternLM2_START_DOCSTRING = r"""
694
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
695
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
696
+ etc.)
697
+
698
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
699
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
700
+ and behavior.
701
+
702
+ Parameters:
703
+ config ([`InternLM2Config`]):
704
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
705
+ load the weights associated with the model, only the configuration. Check out the
706
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
707
+ """
708
+
709
+
710
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
711
+ @add_start_docstrings(
712
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
713
+ InternLM2_START_DOCSTRING,
714
+ )
715
+ class InternLM2PreTrainedModel(PreTrainedModel):
716
+ config_class = InternLM2Config
717
+ base_model_prefix = "model"
718
+ supports_gradient_checkpointing = True
719
+ _no_split_modules = ["InternLM2DecoderLayer"]
720
+ _skip_keys_device_placement = "past_key_values"
721
+
722
+ def _init_weights(self, module):
723
+ std = self.config.initializer_range
724
+ if isinstance(module, nn.Linear):
725
+ module.weight.data.normal_(mean=0.0, std=std)
726
+ if module.bias is not None:
727
+ module.bias.data.zero_()
728
+ elif isinstance(module, nn.Embedding):
729
+ module.weight.data.normal_(mean=0.0, std=std)
730
+ if module.padding_idx is not None:
731
+ module.weight.data[module.padding_idx].zero_()
732
+
733
+
734
+ InternLM2_INPUTS_DOCSTRING = r"""
735
+ Args:
736
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
737
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
738
+ it.
739
+
740
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
741
+ [`PreTrainedTokenizer.__call__`] for details.
742
+
743
+ [What are input IDs?](../glossary#input-ids)
744
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
745
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
746
+
747
+ - 1 for tokens that are **not masked**,
748
+ - 0 for tokens that are **masked**.
749
+
750
+ [What are attention masks?](../glossary#attention-mask)
751
+
752
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
753
+ [`PreTrainedTokenizer.__call__`] for details.
754
+
755
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
756
+ `past_key_values`).
757
+
758
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
759
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
760
+ information on the default strategy.
761
+
762
+ - 1 indicates the head is **not masked**,
763
+ - 0 indicates the head is **masked**.
764
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
765
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
766
+ config.n_positions - 1]`.
767
+
768
+ [What are position IDs?](../glossary#position-ids)
769
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
770
+ when `config.use_cache=True`):
771
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
772
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
773
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
774
+
775
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
776
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
777
+
778
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
779
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
780
+ of shape `(batch_size, sequence_length)`.
781
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
782
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
783
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
784
+ model's internal embedding lookup matrix.
785
+ use_cache (`bool`, *optional*):
786
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
787
+ `past_key_values`).
788
+ output_attentions (`bool`, *optional*):
789
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
790
+ tensors for more detail.
791
+ output_hidden_states (`bool`, *optional*):
792
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
793
+ more detail.
794
+ return_dict (`bool`, *optional*):
795
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
796
+ """
797
+
798
+
799
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
800
+ @add_start_docstrings(
801
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
802
+ InternLM2_START_DOCSTRING,
803
+ )
804
+ class InternLM2Model(InternLM2PreTrainedModel):
805
+ """
806
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
807
+
808
+ Args:
809
+ config: InternLM2Config
810
+ """
811
+
812
+ _auto_class = "AutoModel"
813
+
814
+ def __init__(self, config: InternLM2Config):
815
+ super().__init__(config)
816
+ self.padding_idx = config.pad_token_id
817
+ self.vocab_size = config.vocab_size
818
+ self.config = config
819
+
820
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
821
+
822
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
823
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
824
+
825
+ self.gradient_checkpointing = False
826
+ # Initialize weights and apply final processing
827
+ self.post_init()
828
+
829
+ def get_input_embeddings(self):
830
+ return self.tok_embeddings
831
+
832
+ def set_input_embeddings(self, value):
833
+ self.tok_embeddings = value
834
+
835
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
836
+ # create causal mask
837
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
838
+ combined_attention_mask = None
839
+ if input_shape[-1] > 1:
840
+ combined_attention_mask = _make_causal_mask(
841
+ input_shape,
842
+ inputs_embeds.dtype,
843
+ device=inputs_embeds.device,
844
+ past_key_values_length=past_key_values_length,
845
+ )
846
+
847
+ if attention_mask is not None:
848
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
849
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
850
+ inputs_embeds.device
851
+ )
852
+ combined_attention_mask = (
853
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
854
+ )
855
+
856
+ return combined_attention_mask
857
+
858
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
859
+ def forward(
860
+ self,
861
+ input_ids: torch.LongTensor = None,
862
+ attention_mask: Optional[torch.Tensor] = None,
863
+ position_ids: Optional[torch.LongTensor] = None,
864
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
865
+ inputs_embeds: Optional[torch.FloatTensor] = None,
866
+ use_cache: Optional[bool] = None,
867
+ output_attentions: Optional[bool] = None,
868
+ output_hidden_states: Optional[bool] = None,
869
+ return_dict: Optional[bool] = None,
870
+ **kwargs
871
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
872
+
873
+ im_mask = kwargs.get('im_mask', None)
874
+ infer_mode = kwargs.get('infer_mode', 'base')
875
+
876
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
877
+ output_hidden_states = (
878
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
879
+ )
880
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
881
+
882
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
883
+
884
+ if self.config.attn_implementation == "flash_attention_2":
885
+ _import_flash_attn()
886
+
887
+ # retrieve input_ids and inputs_embeds
888
+ if input_ids is not None and inputs_embeds is not None:
889
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
890
+ elif input_ids is not None:
891
+ batch_size, seq_length = input_ids.shape[:2]
892
+ elif inputs_embeds is not None:
893
+ batch_size, seq_length = inputs_embeds.shape[:2]
894
+ else:
895
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
896
+
897
+ seq_length_with_past = seq_length
898
+ past_key_values_length = 0
899
+ if past_key_values is not None:
900
+ past_key_values_length = past_key_values[0][0].shape[2]
901
+ seq_length_with_past = seq_length_with_past + past_key_values_length
902
+
903
+ if position_ids is None:
904
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
905
+ position_ids = torch.arange(
906
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
907
+ )
908
+ position_ids = position_ids.unsqueeze(0)
909
+
910
+ if inputs_embeds is None:
911
+ inputs_embeds = self.tok_embeddings(input_ids)
912
+ im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device).bool()
913
+
914
+ if self.config.attn_implementation == "flash_attention_2":
915
+ # 2d mask is passed through the layers
916
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
917
+ else:
918
+ if attention_mask is None:
919
+ attention_mask = torch.ones(
920
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
921
+ )
922
+ attention_mask = self._prepare_decoder_attention_mask(
923
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
924
+ )
925
+
926
+ # embed positions
927
+ hidden_states = inputs_embeds
928
+
929
+ if self.gradient_checkpointing and self.training:
930
+ if use_cache:
931
+ logger.warning_once(
932
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
933
+ )
934
+ use_cache = False
935
+
936
+ # decoder layers
937
+ all_hidden_states = () if output_hidden_states else None
938
+ all_self_attns = () if output_attentions else None
939
+ next_decoder_cache = () if use_cache else None
940
+
941
+ for idx, decoder_layer in enumerate(self.layers):
942
+ if output_hidden_states:
943
+ all_hidden_states += (hidden_states,)
944
+
945
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
946
+
947
+ if self.gradient_checkpointing and self.training:
948
+
949
+ def create_custom_forward(module):
950
+ def custom_forward(*inputs):
951
+ # None for past_key_value
952
+ return module(*inputs, output_attentions, None, im_mask, infer_mode)
953
+
954
+ return custom_forward
955
+
956
+ layer_outputs = torch.utils.checkpoint.checkpoint(
957
+ create_custom_forward(decoder_layer),
958
+ hidden_states,
959
+ attention_mask,
960
+ position_ids,
961
+ None,
962
+ )
963
+ else:
964
+ layer_outputs = decoder_layer(
965
+ hidden_states,
966
+ attention_mask=attention_mask,
967
+ position_ids=position_ids,
968
+ past_key_value=past_key_value,
969
+ output_attentions=output_attentions,
970
+ use_cache=use_cache,
971
+ im_mask=im_mask,
972
+ infer_mode=infer_mode,
973
+ )
974
+
975
+ hidden_states = layer_outputs[0]
976
+
977
+ if use_cache:
978
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
979
+
980
+ if output_attentions:
981
+ all_self_attns += (layer_outputs[1],)
982
+
983
+ hidden_states = self.norm(hidden_states)
984
+
985
+ # add hidden states from the last decoder layer
986
+ if output_hidden_states:
987
+ all_hidden_states += (hidden_states,)
988
+
989
+ next_cache = next_decoder_cache if use_cache else None
990
+ if not return_dict:
991
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
992
+ return BaseModelOutputWithPast(
993
+ last_hidden_state=hidden_states,
994
+ past_key_values=next_cache,
995
+ hidden_states=all_hidden_states,
996
+ attentions=all_self_attns,
997
+ )
modeling_internlm_xcomposer2.py ADDED
@@ -0,0 +1,902 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """PyTorch InternLMXComposer2 model."""
18
+ import os
19
+ import re
20
+ import copy
21
+ import queue
22
+ import threading
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from PIL import Image
28
+ import numpy as np
29
+ import random
30
+ from torch import nn
31
+ from torch.nn import CrossEntropyLoss
32
+ from torchvision import transforms
33
+ from torchvision.transforms.functional import InterpolationMode
34
+ from transformers.modeling_outputs import CausalLMOutputWithPast
35
+ from transformers.utils import (add_start_docstrings_to_model_forward,
36
+ replace_return_docstrings)
37
+ from transformers import StoppingCriteria, StoppingCriteriaList
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
39
+ try:
40
+ from transformers.generation.streamers import BaseStreamer
41
+ except: # noqa # pylint: disable=bare-except
42
+ BaseStreamer = None
43
+
44
+ import torchvision.transforms as transforms
45
+ from torchvision.transforms.functional import InterpolationMode
46
+
47
+ from .build_mlp import build_vision_projector, build_vision_tower
48
+ from .ixc_utils import Image_transform, Video_transform, load_video, frame2img, get_font
49
+ from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config
50
+ from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model,
51
+ InternLM2PreTrainedModel)
52
+
53
+ _CONFIG_FOR_DOC = 'InternLMXcomposer2Config'
54
+
55
+ image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp'}
56
+ video_extensions = {'.mp4', '.avi', '.mkv', '.mov', '.wmv'}
57
+
58
+ class StoppingCriteriaSub(StoppingCriteria):
59
+
60
+ def __init__(self, stops=[], encounters=1):
61
+ super().__init__()
62
+ self.stops = stops
63
+
64
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
65
+ for stop in self.stops:
66
+ if torch.all((stop == input_ids[0][-len(stop):])).item():
67
+ return True
68
+ return False
69
+
70
+
71
+ def get_stopping_criteria(stop_words_ids):
72
+ stop_words_ids = [torch.tensor([i]).cuda() for i in stop_words_ids]
73
+ stopping_criteria = StoppingCriteriaList(
74
+ [StoppingCriteriaSub(stops=stop_words_ids)])
75
+ return stopping_criteria
76
+
77
+ def set_random_seed(seed, set_cudnn=False):
78
+ """Set the random seed for reproducibility.
79
+
80
+ Parameters:
81
+ seed (int): The seed to use for generating random numbers.
82
+ """
83
+ torch.manual_seed(seed)
84
+ if torch.cuda.is_available():
85
+ torch.cuda.manual_seed_all(seed) # For multi-GPU.
86
+ np.random.seed(seed)
87
+ random.seed(seed)
88
+ if set_cudnn and torch.backends.cudnn.is_available():
89
+ torch.backends.cudnn.deterministic = True
90
+ torch.backends.cudnn.benchmark = False
91
+
92
+ class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
93
+ _auto_class = 'AutoModelForCausalLM'
94
+
95
+ _tied_weights_keys = ['output.weight']
96
+
97
+ def __init__(self, config):
98
+ super().__init__(config)
99
+ self.model = InternLM2Model(config)
100
+ self.vocab_size = config.vocab_size
101
+ self.output = nn.Linear(
102
+ config.hidden_size, config.vocab_size, bias=False)
103
+ self.tokenizer = None
104
+ self.hd_num = 25
105
+ self.font = get_font()
106
+
107
+ self.max_length = config.max_length
108
+ print(f'Set max length to {self.max_length}')
109
+ # Initialize weights and apply final processing
110
+ self.post_init()
111
+ self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096]))
112
+ self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096]))
113
+
114
+ self.vit = build_vision_tower()
115
+ self.vision_proj = build_vision_projector()
116
+ self.video_mem_proj = build_vision_projector(1536)
117
+
118
+ self.vis_processor = transforms.Compose([
119
+ transforms.ToTensor(),
120
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
121
+ (0.26862954, 0.26130258, 0.27577711)),
122
+ ])
123
+
124
+
125
+
126
+
127
+ def _set_gradient_checkpointing(self, module, value=False):
128
+ if isinstance(module, InternLM2Model):
129
+ module.gradient_checkpointing = value
130
+ if value:
131
+ self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
132
+
133
+ def get_input_embeddings(self):
134
+ return self.model.tok_embeddings
135
+
136
+ def set_input_embeddings(self, value):
137
+ self.model.tok_embeddings = value
138
+
139
+ def get_output_embeddings(self):
140
+ return self.output
141
+
142
+ def set_output_embeddings(self, new_embeddings):
143
+ self.output = new_embeddings
144
+
145
+ def set_decoder(self, decoder):
146
+ self.model = decoder
147
+
148
+ def get_decoder(self):
149
+ return self.model
150
+
151
+ def encode_text(self, text, add_special_tokens=False):
152
+ token = self.tokenizer(
153
+ text, return_tensors='pt',
154
+ add_special_tokens=add_special_tokens).input_ids.to(self.device)
155
+ embs = self.model.tok_embeddings(token)
156
+ return embs
157
+
158
+ def encode_img(self, image, hd_num=25):
159
+ if image is None:
160
+ return None
161
+ if isinstance(image, str):
162
+ _, ext = os.path.splitext(image)
163
+ if ext.lower() in image_extensions:
164
+ image = Image.open(image)
165
+ image = Image_transform(image, hd_num = hd_num)
166
+ elif ext.lower() in video_extensions:
167
+ image = load_video(image)
168
+ image = frame2img(image, self.font)
169
+ image = Video_transform(image, hd_num = hd_num)
170
+ else:
171
+ print ('Unknow input format', image)
172
+ return None
173
+ image = self.vis_processor(image).unsqueeze(0).to(self.device)
174
+ else:
175
+ assert isinstance(image, torch.Tensor)
176
+
177
+ img_embeds, atts_img, img_target = self.img2emb(image)
178
+ return img_embeds
179
+
180
+ def img2emb(self, image):
181
+ img_embeds, img_split = self.vit([image],
182
+ self.plora_glb_GN, self.plora_sub_GN)
183
+ if len(img_split) > 1:
184
+ print ('Batch Size >1 is not supported.')
185
+ assert 0
186
+ #print (img_embeds.shape)
187
+ img_embeds = self.vision_proj(img_embeds)
188
+ atts_img = torch.ones(
189
+ img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
190
+
191
+ img_target = torch.ones(
192
+ img_embeds.size()[:2], dtype=torch.long).to(
193
+ img_embeds.device) * -100
194
+
195
+ return img_embeds, atts_img, img_target
196
+
197
+ def prompt_wrap(self, img_embeds, prompt):
198
+ batch_size = img_embeds.shape[0]
199
+ p_before, p_after = prompt.split('<ImageHere>')
200
+ p_before_tokens = self.tokenizer(
201
+ p_before, return_tensors='pt',
202
+ add_special_tokens=True).to(img_embeds.device)
203
+
204
+ p_before_embeds = self.model.tok_embeddings(
205
+ p_before_tokens.input_ids).expand(batch_size, -1, -1)
206
+ wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
207
+
208
+ wrapped_atts_img = torch.ones(
209
+ wrapped_img_embeds.size()[:-1],
210
+ dtype=torch.long).to(img_embeds.device)
211
+
212
+ wrapped_target = torch.ones(
213
+ batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
214
+ img_embeds.device) * -100
215
+
216
+ return wrapped_img_embeds, wrapped_atts_img, wrapped_target
217
+
218
+ def text2emb(self, text, add_special_tokens=False):
219
+ to_regress_tokens = self.tokenizer(
220
+ text,
221
+ return_tensors='pt',
222
+ padding='longest',
223
+ truncation=True,
224
+ max_length=self.max_length,
225
+ add_special_tokens=add_special_tokens
226
+ ).to(self.device)
227
+
228
+ targets = self.mask_human_targets(to_regress_tokens.input_ids)
229
+ targets = targets.to(self.device)
230
+ return to_regress_tokens, targets
231
+
232
+ def interleav_wrap_chat(self, query, image, history = [], meta_instruction='', max_length=16384, hd_num=24):
233
+ self.max_length = max_length
234
+ prompt = ''
235
+ if meta_instruction:
236
+ prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
237
+ for record in history:
238
+ prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
239
+ prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
240
+
241
+ image_nums = len(image)
242
+ if image_nums == 1 and prompt.find('<ImageHere>') == -1:
243
+ #print ('auto append image at the begining')
244
+ prompt = '<ImageHere>' + prompt
245
+
246
+ parts = prompt.split('<ImageHere>')
247
+ wrap_embeds, wrap_im_mask = [], []
248
+ temp_len = 0
249
+ need_bos = True
250
+
251
+ if len(parts) != image_nums + 1:
252
+ #raise ValueError('Invalid <ImageHere> prompt format.')
253
+ print ('Waring! The image number != given position!')
254
+ if image_nums > 1:
255
+ hd_num = 6
256
+ else:
257
+ hu_num = hd_num
258
+ for idx, part in enumerate(parts):
259
+ if need_bos or len(part) > 0:
260
+ part_tokens = self.tokenizer(
261
+ part,
262
+ return_tensors='pt',
263
+ padding='longest',
264
+ add_special_tokens=need_bos).to(self.device)
265
+ if need_bos:
266
+ need_bos = False
267
+
268
+ part_embeds = self.model.tok_embeddings(
269
+ part_tokens.input_ids)
270
+ wrap_embeds.append(part_embeds)
271
+ wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
272
+ temp_len += part_embeds.shape[1]
273
+ if idx < image_nums:
274
+ img = self.encode_img(image[idx], hd_num)
275
+ wrap_embeds.append(img)
276
+ wrap_im_mask.append(torch.ones(img.shape[:2]))
277
+ temp_len += img.shape[1]
278
+
279
+ if temp_len > self.max_length:
280
+ break
281
+
282
+ wrap_embeds = torch.cat(wrap_embeds, dim=1)
283
+ wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
284
+ wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
285
+ wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool()
286
+ inputs = {
287
+ 'inputs_embeds': wrap_embeds
288
+ }
289
+ return inputs, wrap_im_mask, temp_len
290
+
291
+ def interleav_wrap(self, img_list, text_list, image_nums):
292
+ temp_embeds = []
293
+ temp_im_mask = []
294
+ temp_tars = []
295
+
296
+ # encode_image
297
+ img_embeds, img_split = self.vit(img_list, self.plora_glb_GN, self.plora_sub_GN)
298
+ img_embeds = self.vision_proj(img_embeds)
299
+
300
+ text_list = text_list[0]
301
+ for idx, text in enumerate(text_list):
302
+ image_num = image_nums[idx]
303
+ im_id = int(np.sum(image_nums[:idx]))
304
+ images = []
305
+ for i in range(image_nums[idx]):
306
+ st = int(np.sum(img_split[:im_id + i]))
307
+ sp = img_split[im_id + i]
308
+ temp_img = img_embeds[:, st:st+sp]
309
+ images.append(temp_img)
310
+ atts_img = torch.ones((len(images), images[0].shape[1]), dtype=torch.long).to(self.device)
311
+ img_target = torch.ones(
312
+ (len(images), images[0].shape[1]), dtype=torch.long).to(
313
+ self.device) * -100
314
+
315
+ if image_num == 1 and text.find('<ImageHere>') == -1:
316
+ text = '<ImageHere>' + text
317
+ parts = text.split('<ImageHere>')
318
+
319
+ wrap_tokens, wrap_embeds, wrap_im_mask = [], [], []
320
+ temp_len = 0
321
+ need_bos = True
322
+ for idx, part in enumerate(parts):
323
+ if len(part) > 0:
324
+ part_tokens = self.tokenizer(part, return_tensors='pt', padding='longest',
325
+ add_special_tokens=need_bos).to(self.device)
326
+ if need_bos:
327
+ need_bos = False
328
+ wrap_tokens.append(part_tokens.input_ids)
329
+ part_embeds = self.model.tok_embeddings(part_tokens.input_ids)
330
+ wrap_embeds.append(part_embeds)
331
+ wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]).to(self.device))
332
+ temp_len += part_embeds.shape[1]
333
+ if idx < image_num:
334
+ wrap_embeds.append(images[idx])
335
+ wrap_token = torch.ones(images[idx].shape[:2], dtype=torch.long).to(self.device) * -100
336
+ wrap_tokens.append(wrap_token)
337
+ wrap_im_mask.append(torch.ones(images[idx].shape[:2]).to(self.device))
338
+ temp_len += images[idx].shape[1]
339
+ if temp_len > self.max_length:
340
+ break
341
+ wrap_tokens = torch.cat(wrap_tokens, dim=1)
342
+ wrap_embeds = torch.cat(wrap_embeds, dim=1)
343
+ wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
344
+
345
+ wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
346
+
347
+ temp_embeds.append(wrap_embeds)
348
+ temp_im_mask.append(wrap_im_mask)
349
+ temp_tars.append(wrap_target)
350
+
351
+ temp_max_len = np.max([i.shape[1] for i in temp_embeds])
352
+ temp_max_len = min(temp_max_len, self.max_length)
353
+
354
+ final_input, final_atts, final_tars, final_mask = [], [], [], []
355
+ pad = torch.ones([1, 1]) * self.tokenizer.pad_token_id
356
+ pad = pad.long().to(self.device)
357
+ pad_emb = self.model.tok_embeddings(pad)
358
+
359
+ for idx in range(len(temp_embeds)):
360
+ temp_len = temp_embeds[idx].shape[1]
361
+ if temp_len >= temp_max_len:
362
+ final_input.append(temp_embeds[idx][:, :temp_max_len])
363
+ final_atts.append(torch.ones(1, temp_max_len).to(wrap_target.dtype).to(self.device))
364
+ final_tars.append(temp_tars[idx][:, :temp_max_len])
365
+ final_mask.append(temp_im_mask[idx][:, :temp_max_len])
366
+ else:
367
+ final_input.append(torch.cat([temp_embeds[idx], pad_emb.repeat(1, temp_max_len-temp_len, 1)], dim=1))
368
+ final_atts.append(torch.cat([torch.ones(1, temp_len), torch.zeros(1, temp_max_len-temp_len)], dim=1).to(wrap_target.dtype).to(self.device))
369
+ final_tars.append(torch.cat([temp_tars[idx], (torch.ones(1, temp_max_len-temp_len)*-100).to(wrap_target.dtype).to(self.device)], dim=1))
370
+ final_mask.append(torch.cat([temp_im_mask[idx], (torch.zeros(1, temp_max_len-temp_len)).to(wrap_target.dtype).to(self.device)], dim=1))
371
+
372
+ inputs_embeds = torch.cat(final_input, dim=0)
373
+ attention_mask = torch.cat(final_atts, dim=0)
374
+ targets = torch.cat(final_tars, dim=0)
375
+ im_mask = torch.cat(final_mask, dim=0)
376
+
377
+ return inputs_embeds, attention_mask, targets, im_mask
378
+
379
+ def mask_human_targets(self, input_ids, pure=False):
380
+ target_batch = []
381
+ for bs in range(input_ids.shape[0]):
382
+ ids = input_ids[bs]
383
+ targets = copy.deepcopy(ids)
384
+ end_count = 0
385
+ last_eoa = 0
386
+ for i, temp_id in enumerate(ids):
387
+ if temp_id == 92542:
388
+ if end_count % 2 == 0:
389
+ targets[last_eoa:i + 6] = -100
390
+ else:
391
+ last_eoa = i + 1
392
+ end_count += 1
393
+ # # eos and following pad
394
+ elif temp_id == 2:
395
+ # loss on eos, but not on pad
396
+ targets[i + 1:] = -100
397
+ break
398
+ # trunction, end at last question
399
+ if temp_id != 2 and end_count % 2 == 0:
400
+ # mask all after the last answer
401
+ targets[last_eoa + 1:] = -100
402
+ target_batch.append(targets.unsqueeze(0))
403
+ target_batch = torch.cat(target_batch, dim=0)
404
+ return target_batch
405
+
406
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
407
+ @replace_return_docstrings(
408
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
409
+ def forward(self,
410
+ input_ids: torch.LongTensor = None,
411
+ attention_mask: Optional[torch.Tensor] = None,
412
+ position_ids: Optional[torch.LongTensor] = None,
413
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
414
+ inputs_embeds: Optional[torch.FloatTensor] = None,
415
+ labels: Optional[torch.LongTensor] = None,
416
+ use_cache: Optional[bool] = None,
417
+ output_attentions: Optional[bool] = None,
418
+ output_hidden_states: Optional[bool] = None,
419
+ return_dict: Optional[bool] = None,
420
+ **kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
421
+ r"""
422
+ Args:
423
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
424
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
425
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
426
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
427
+ Returns:
428
+ """
429
+
430
+ samples = kwargs.get('samples', None)
431
+ if samples:
432
+ infer_mode = samples.get('infer_mode', 'base')
433
+ if samples['data_type'][0] == 'text':
434
+ has_img = False
435
+ elif samples['data_type'][0] == 'multi':
436
+ has_img = True
437
+ else:
438
+ raise NotImplementedError
439
+
440
+ # encode text
441
+ text = samples['text_input']
442
+ # encode image
443
+ if has_img:
444
+ image = samples['image'][0]
445
+ bs = len(samples['text_input'][0])
446
+ image_nums = []
447
+ temp_image = []
448
+ for im in image:
449
+ if type(im) is list:
450
+ image_nums.append(len(im))
451
+ temp_image.extend(im)
452
+ else:
453
+ image_nums.append(1)
454
+ temp_image.append(im)
455
+ image = temp_image
456
+ assert type(image) is list and len(image_nums) == bs
457
+
458
+ to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
459
+ image, text, image_nums)
460
+ else:
461
+ to_regress_tokens, targets = self.text2emb(
462
+ text, add_special_tokens=True)
463
+ to_regress_embeds = self.model.tok_embeddings(
464
+ to_regress_tokens.input_ids)
465
+ attention_mask = to_regress_tokens.attention_mask
466
+ im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
467
+
468
+ inputs_embeds = to_regress_embeds[:, :self.max_length]
469
+ attention_mask = attention_mask[:, :self.max_length]
470
+ targets = targets[:, :self.max_length]
471
+ im_mask = im_mask[:, :self.max_length].bool()
472
+ labels = targets
473
+ else:
474
+ im_mask = kwargs.get('im_mask', None)
475
+ infer_mode = kwargs.get('infer_mode', 'base')
476
+ if im_mask is None and inputs_embeds is not None:
477
+ im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
478
+ inputs_embeds.device)
479
+ im_mask = im_mask.bool()
480
+
481
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
482
+ output_hidden_states = (
483
+ output_hidden_states if output_hidden_states is not None else
484
+ self.config.output_hidden_states)
485
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
486
+
487
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
488
+ outputs = self.model(
489
+ input_ids=input_ids,
490
+ attention_mask=attention_mask,
491
+ position_ids=position_ids,
492
+ past_key_values=past_key_values,
493
+ inputs_embeds=inputs_embeds,
494
+ use_cache=use_cache,
495
+ output_attentions=output_attentions,
496
+ output_hidden_states=output_hidden_states,
497
+ return_dict=return_dict,
498
+ im_mask=im_mask,
499
+ infer_mode=infer_mode,
500
+ )
501
+
502
+ hidden_states = outputs[0]
503
+ logits = self.output(hidden_states)
504
+ logits = logits.float()
505
+
506
+ loss = None
507
+ if labels is not None:
508
+ # Shift so that tokens < n predict n
509
+ shift_logits = logits[..., :-1, :].contiguous()
510
+ shift_labels = labels[..., 1:].contiguous()
511
+ # Flatten the tokens
512
+ loss_fct = CrossEntropyLoss()
513
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
514
+ shift_labels = shift_labels.view(-1)
515
+ # Enable model parallelism
516
+ shift_labels = shift_labels.to(shift_logits.device)
517
+ loss = loss_fct(shift_logits, shift_labels)
518
+
519
+ if not return_dict:
520
+ output = (logits, ) + outputs[1:]
521
+ return (loss, ) + output if loss is not None else output
522
+
523
+ return CausalLMOutputWithPast(
524
+ loss=loss,
525
+ logits=logits,
526
+ past_key_values=outputs.past_key_values,
527
+ hidden_states=outputs.hidden_states,
528
+ attentions=outputs.attentions,
529
+ )
530
+
531
+ def prepare_inputs_for_generation(self,
532
+ input_ids,
533
+ past_key_values=None,
534
+ attention_mask=None,
535
+ inputs_embeds=None,
536
+ im_mask=None,
537
+ infer_mode='base',
538
+ **kwargs):
539
+ if past_key_values is not None:
540
+ past_length = past_key_values[0][0].shape[2]
541
+
542
+ # Some generation methods already pass only the last input ID
543
+ if input_ids.shape[1] > past_length:
544
+ remove_prefix_length = past_length
545
+ else:
546
+ # Default to old behavior: keep only final ID
547
+ remove_prefix_length = input_ids.shape[1] - 1
548
+
549
+ input_ids = input_ids[:, remove_prefix_length:]
550
+
551
+ position_ids = kwargs.get('position_ids', None)
552
+ if attention_mask is not None and position_ids is None:
553
+ # create position_ids on the fly for batch generation
554
+ position_ids = attention_mask.long().cumsum(-1) - 1
555
+ position_ids.masked_fill_(attention_mask == 0, 1)
556
+ if past_key_values:
557
+ position_ids = position_ids[:, -input_ids.shape[1]:]
558
+
559
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
560
+ if inputs_embeds is not None and past_key_values is None:
561
+ model_inputs = {'inputs_embeds': inputs_embeds}
562
+ else:
563
+ model_inputs = {'input_ids': input_ids}
564
+
565
+ im_mask = im_mask
566
+
567
+ model_inputs.update({
568
+ 'position_ids': position_ids,
569
+ 'past_key_values': past_key_values,
570
+ 'use_cache': kwargs.get('use_cache'),
571
+ 'attention_mask': attention_mask,
572
+ 'im_mask': im_mask,
573
+ 'infer_mode': infer_mode,
574
+ })
575
+ return model_inputs
576
+
577
+ @staticmethod
578
+ def _reorder_cache(past_key_values, beam_idx):
579
+ reordered_past = ()
580
+ for layer_past in past_key_values:
581
+ reordered_past += (tuple(
582
+ past_state.index_select(0, beam_idx.to(past_state.device))
583
+ for past_state in layer_past), )
584
+ return reordered_past
585
+
586
+ def build_inputs(self,
587
+ tokenizer,
588
+ query: str,
589
+ history: List[Tuple[str, str]] = [],
590
+ meta_instruction=''):
591
+ prompt = ''
592
+ if meta_instruction:
593
+ prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
594
+ else:
595
+ prompt += '<s>'
596
+ for record in history:
597
+ prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
598
+ prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
599
+ return tokenizer([prompt], return_tensors='pt')
600
+
601
+ @torch.no_grad()
602
+ def chat(
603
+ self,
604
+ tokenizer,
605
+ query: str,
606
+ image: List[Tuple[str, str]] = [],
607
+ hd_num: int = 24,
608
+ history: List[Tuple[str, str]] = [],
609
+ streamer: Optional[BaseStreamer] = None,
610
+ max_new_tokens: int = 1024,
611
+ do_sample: bool = True,
612
+ num_beams: int = 1,
613
+ temperature: float = 1.0,
614
+ top_p: float = 0.8,
615
+ repetition_penalty: float=1.005,
616
+ infer_mode: str = 'base',
617
+ use_meta: bool = False,
618
+ meta_instruction:
619
+ str = '',
620
+ **kwargs,
621
+ ):
622
+
623
+ if not use_meta:
624
+ meta_instruction = ''
625
+ if image is None:
626
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
627
+ im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool()
628
+ else:
629
+ inputs, im_mask, _ = self.interleav_wrap_chat(query, image, history=history, meta_instruction=meta_instruction, hd_num=hd_num)
630
+ inputs = {
631
+ k: v.to(self.device)
632
+ for k, v in inputs.items() if torch.is_tensor(v)
633
+ }
634
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
635
+ eos_token_id = [
636
+ tokenizer.eos_token_id,
637
+ tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
638
+ ]
639
+ outputs = self.generate(
640
+ **inputs,
641
+ streamer=streamer,
642
+ max_new_tokens=max_new_tokens,
643
+ num_beams=num_beams,
644
+ do_sample=do_sample,
645
+ temperature=temperature,
646
+ top_p=top_p,
647
+ eos_token_id=eos_token_id,
648
+ repetition_penalty=repetition_penalty,
649
+ im_mask=im_mask,
650
+ infer_mode=infer_mode,
651
+ **kwargs,
652
+ )
653
+ if image is None:
654
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
655
+ else:
656
+ outputs = outputs[0].cpu().tolist()
657
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
658
+ response = response.split('[UNUSED_TOKEN_145]')[0]
659
+ history = history + [(query, response)]
660
+ return response, history
661
+
662
+ @torch.no_grad()
663
+ def write_artical(
664
+ self,
665
+ inst: str,
666
+ image: List[Tuple[str, str]] = [],
667
+ hd_num: int = 25,
668
+ history: List[Tuple[str, str]] = [],
669
+ streamer: Optional[BaseStreamer] = None,
670
+ max_new_tokens: int = 1024,
671
+ do_sample: bool = True,
672
+ num_beams: int = 1,
673
+ temperature: float = 1.0,
674
+ top_p: float = 0.8,
675
+ repetition_penalty: float=1.005,
676
+ max_length: int=8192,
677
+ seed: int = -1,
678
+ use_meta: bool = False,
679
+ **kwargs,
680
+ ):
681
+ meta_instruction = """You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).
682
+ - InternLM-XComposer (浦语·灵笔) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
683
+ - InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.
684
+ """
685
+ if seed != -1:
686
+ set_seed(seed)
687
+ if len(history):
688
+ print ('Only chat function support multi round now, history will be ignored in the artical mode')
689
+ stop_words_ids = [92542]
690
+ stopping_criteria = get_stopping_criteria(stop_words_ids)
691
+
692
+ if not use_meta:
693
+ meta_instruction = ''
694
+ with torch.no_grad():
695
+ inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image, meta_instruction=meta_instruction, max_length=max_length)
696
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
697
+ with torch.no_grad():
698
+ generate = self.generate(inputs_embeds=inputs['inputs_embeds'],
699
+ do_sample=do_sample,
700
+ num_beams=num_beams,
701
+ temperature=temperature,
702
+ repetition_penalty=repetition_penalty,
703
+ stopping_criteria=stopping_criteria,
704
+ max_new_tokens=max_length - len_input_tokens,
705
+ top_p=0.8,
706
+ top_k=40,
707
+ length_penalty=1.0,
708
+ im_mask=im_mask,
709
+ infer_mode='write'
710
+ )
711
+
712
+ response = generate[0].tolist()
713
+ response = self.tokenizer.decode(response, skip_special_tokens=True)
714
+ # remove eoa
715
+ response = response.replace('[UNUSED_TOKEN_145]', '')
716
+ response = response.replace('[UNUSED_TOKEN_146]', '')
717
+
718
+ return response
719
+
720
+ @torch.no_grad()
721
+ def write_webpage(
722
+ self,
723
+ inst: str,
724
+ image: List[Tuple[str, str]] = [],
725
+ max_new_tokens: int = 4800,
726
+ do_sample: bool = True,
727
+ num_beams: int = 2,
728
+ temperature: float = 1.0,
729
+ repetition_penalty: float=3.0,
730
+ seed: int = -1,
731
+ use_meta: bool = False,
732
+ task: str = 'Instruction-aware Webpage Generation',
733
+ **kwargs,
734
+ ):
735
+
736
+ if seed != -1:
737
+ set_random_seed(seed, set_cudnn=True)
738
+ with torch.no_grad():
739
+ inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image)
740
+
741
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
742
+ with torch.no_grad():
743
+ generate = self.generate(inputs_embeds=inputs['inputs_embeds'],
744
+ do_sample=do_sample,
745
+ temperature=temperature,
746
+ num_beams=num_beams,
747
+ repetition_penalty=repetition_penalty,
748
+ max_new_tokens=max_new_tokens,
749
+ im_mask=im_mask,
750
+ infer_mode='web'
751
+ )
752
+ response = generate[0].tolist()
753
+ response = self.tokenizer.decode(response, skip_special_tokens=True)
754
+ # remove eoa
755
+ response = response.replace('[UNUSED_TOKEN_145]', '')
756
+ out = response.replace('[UNUSED_TOKEN_146]', '')
757
+ image_type = 'random'
758
+ pattern = r'''https://source\.unsplash\.com/random/(\d+)x(\d+)/\?([^'"]+)'''
759
+ if image_type == 'placeholder':
760
+ out = re.sub(pattern, r"https://placehold.co/\1x\2", out)
761
+ elif image_type == 'random':
762
+ out = re.sub(pattern, r"https://picsum.photos/\1/\2", out)
763
+
764
+ with open(task.replace(' ', '_') + ".html", "w") as f:
765
+ f.write(out)
766
+ return out
767
+
768
+ @torch.no_grad()
769
+ def resume_2_webpage(
770
+ self,
771
+ inst: str,
772
+ image: List[Tuple[str, str]] = [],
773
+ max_new_tokens: int = 4800,
774
+ do_sample: bool = True,
775
+ num_beams: int = 2,
776
+ temperature: float = 1.0,
777
+ repetition_penalty: float=3.0,
778
+ seed: int = -1,
779
+ use_meta: bool = False,
780
+ task: str = 'Resume-to-Personal Page',
781
+ **kwargs,
782
+ ):
783
+
784
+ if seed != -1:
785
+ set_random_seed(seed, set_cudnn=True)
786
+ try:
787
+ with open(inst) as fd:
788
+ resume = fd.read()
789
+ except:
790
+ print ('The input should be a resume with markdown format.')
791
+ inst = ' Generate a personal page using the content in the resume:' + resume
792
+ with torch.no_grad():
793
+ inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image)
794
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
795
+ with torch.no_grad():
796
+ generate = self.generate(inputs_embeds=inputs['inputs_embeds'],
797
+ do_sample=do_sample,
798
+ temperature=temperature,
799
+ num_beams=num_beams,
800
+ repetition_penalty=repetition_penalty,
801
+ max_new_tokens=max_new_tokens,
802
+ im_mask=im_mask,
803
+ infer_mode='web'
804
+ )
805
+ response = generate[0].tolist()
806
+ response = self.tokenizer.decode(response, skip_special_tokens=True)
807
+ # remove eoa
808
+ response = response.replace('[UNUSED_TOKEN_145]', '')
809
+ html = response.replace('[UNUSED_TOKEN_146]', '')
810
+
811
+ if seed != -1:
812
+ set_random_seed(seed, set_cudnn=True)
813
+ js_inst = ' Generate JavaScript events for the html code:' + html
814
+ with torch.no_grad():
815
+ inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(js_inst, image)
816
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
817
+ with torch.no_grad():
818
+ generate = self.generate(inputs_embeds=inputs['inputs_embeds'],
819
+ do_sample=do_sample,
820
+ temperature=temperature,
821
+ num_beams=num_beams,
822
+ repetition_penalty=repetition_penalty,
823
+ max_new_tokens=max_new_tokens,
824
+ im_mask=im_mask,
825
+ infer_mode='web'
826
+ )
827
+ response = generate[0].tolist()
828
+ response = self.tokenizer.decode(response, skip_special_tokens=True)
829
+ # remove eoa
830
+ response = response.replace('[UNUSED_TOKEN_145]', '')
831
+ js = response.replace('[UNUSED_TOKEN_146]', '')
832
+
833
+ if re.search(r'</script>', html):
834
+ js = re.findall(r'<script>([\s\S]*?)<\/script>', js)
835
+ html = re.sub(r'(</script>)', f'\n{js}\n' + r'\1', html)
836
+ elif re.search(r'</html>', html):
837
+ html = re.sub(r'(</html>)', f'\n{js}\n' + r'\1', html)
838
+ out = html
839
+
840
+ image_type = 'random'
841
+ pattern = r'''https://source\.unsplash\.com/random/(\d+)x(\d+)/\?([^'"]+)'''
842
+ if image_type == 'placeholder':
843
+ out = re.sub(pattern, r"https://placehold.co/\1x\2", out)
844
+ elif image_type == 'random':
845
+ out = re.sub(pattern, r"https://picsum.photos/\1/\2", out)
846
+
847
+ with open(task.replace(' ', '_') + ".html", "w") as f:
848
+ f.write(out)
849
+ return out
850
+
851
+
852
+ @torch.no_grad()
853
+ def screen_2_webpage(
854
+ self,
855
+ inst: str,
856
+ image: List[Tuple[str, str]] = [],
857
+ max_new_tokens: int = 4800,
858
+ do_sample: bool = True,
859
+ num_beams: int = 2,
860
+ temperature: float = 1.0,
861
+ repetition_penalty: float=3.0,
862
+ seed: int = -1,
863
+ use_meta: bool = False,
864
+ task: str = 'Screenshot-to-Webpage',
865
+ **kwargs,
866
+ ):
867
+
868
+ if seed != -1:
869
+ set_random_seed(seed, set_cudnn=True)
870
+ if len(image) == 0:
871
+ print ('No image is provided, skip')
872
+ return ''
873
+ inst = ' Generate the HTML code of this web image with Tailwind CSS.'
874
+ with torch.no_grad():
875
+ inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image)
876
+
877
+ with torch.autocast(device_type='cuda'):
878
+ with torch.no_grad():
879
+ generate = self.generate(inputs_embeds=inputs['inputs_embeds'],
880
+ do_sample=do_sample,
881
+ temperature=temperature,
882
+ num_beams=num_beams,
883
+ repetition_penalty=repetition_penalty,
884
+ max_new_tokens=max_new_tokens,
885
+ im_mask=im_mask,
886
+ infer_mode='web'
887
+ )
888
+ response = generate[0].tolist()
889
+ response = self.tokenizer.decode(response, skip_special_tokens=True)
890
+ # remove eoa
891
+ response = response.replace('[UNUSED_TOKEN_145]', '')
892
+ out = response.replace('[UNUSED_TOKEN_146]', '')
893
+ image_type = 'random'
894
+ pattern = r'''https://source\.unsplash\.com/random/(\d+)x(\d+)/\?([^'"]+)'''
895
+ if image_type == 'placeholder':
896
+ out = re.sub(pattern, r"https://placehold.co/\1x\2", out)
897
+ elif image_type == 'random':
898
+ out = re.sub(pattern, r"https://picsum.photos/\1/\2", out)
899
+
900
+ with open(task.replace(' ', '_') + ".html", "w") as f:
901
+ f.write(out)
902
+ return out
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6084a202057ea15987062d4477144153ee3996b0226eb2522ff7a07057fd3ae
3
+ size 9983936800
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eca73d25c0dd8928b0eedbdfcb9da6a24cf8332cd4aee7ee4cd1d72730f7df57
3
+ size 7376028276
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,949 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17359626240
4
+ },
5
+ "weight_map": {
6
+ "model.layers.0.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
7
+ "model.layers.0.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.0.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.0.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.0.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.0.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.0.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.1.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.1.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.1.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.1.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.1.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.1.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.1.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.1.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.1.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.1.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.1.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.1.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.10.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.10.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.10.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.10.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.10.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.10.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.10.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.10.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.10.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.10.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.10.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.10.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.10.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.10.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.10.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.10.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.10.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.11.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.11.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.11.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.11.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.11.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.11.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.11.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.11.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.11.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.11.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.11.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.11.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.11.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.11.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.11.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.11.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.11.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.12.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.12.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.12.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.12.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.12.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.12.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.12.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.12.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.12.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.12.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.12.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.12.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.12.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.12.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.12.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.12.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.12.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.13.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.13.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.13.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.13.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.13.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.13.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.13.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.13.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.13.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.13.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.13.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.13.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.13.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.13.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.13.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.13.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.13.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.14.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.14.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.14.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.14.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.14.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.14.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.14.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.14.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.14.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.14.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.14.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.14.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.14.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.14.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.14.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.14.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.14.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.15.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.15.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.15.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.15.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.15.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.15.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.15.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.15.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.15.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.15.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.15.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.15.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.15.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.15.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.15.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.15.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.15.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.16.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.16.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.16.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.16.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.16.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.16.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.16.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.16.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.16.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.16.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.16.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.16.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.16.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.16.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.16.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.16.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.16.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.17.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.17.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.17.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.17.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.17.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.17.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.17.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.17.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.17.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.17.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.17.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.17.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.17.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.17.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.17.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.17.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.17.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.18.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.18.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.18.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
179
+ "model.layers.18.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
180
+ "model.layers.18.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
181
+ "model.layers.18.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
182
+ "model.layers.18.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
183
+ "model.layers.18.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
184
+ "model.layers.18.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
185
+ "model.layers.18.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
186
+ "model.layers.18.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
187
+ "model.layers.18.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
188
+ "model.layers.18.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
189
+ "model.layers.18.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
190
+ "model.layers.18.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
191
+ "model.layers.18.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
192
+ "model.layers.18.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
193
+ "model.layers.19.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
194
+ "model.layers.19.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
195
+ "model.layers.19.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
196
+ "model.layers.19.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
197
+ "model.layers.19.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
198
+ "model.layers.19.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
199
+ "model.layers.19.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.19.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
201
+ "model.layers.19.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
202
+ "model.layers.19.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
203
+ "model.layers.19.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.19.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.19.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.19.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.19.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.19.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.19.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.2.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
211
+ "model.layers.2.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
212
+ "model.layers.2.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
213
+ "model.layers.2.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
214
+ "model.layers.2.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
215
+ "model.layers.2.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
216
+ "model.layers.2.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.2.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.2.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.2.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
220
+ "model.layers.2.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.2.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.2.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.2.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.2.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
225
+ "model.layers.2.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
226
+ "model.layers.2.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
227
+ "model.layers.20.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.20.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.20.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.20.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.20.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.20.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.20.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.20.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.20.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.20.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.20.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.20.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.20.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.20.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.20.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.20.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
243
+ "model.layers.20.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
244
+ "model.layers.21.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
245
+ "model.layers.21.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
246
+ "model.layers.21.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
247
+ "model.layers.21.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
248
+ "model.layers.21.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.21.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.21.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.21.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.21.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.21.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.21.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.21.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.21.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.21.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.21.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.21.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.21.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.22.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.22.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.22.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.22.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.22.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.22.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.22.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.22.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
269
+ "model.layers.22.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
270
+ "model.layers.22.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
271
+ "model.layers.22.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
272
+ "model.layers.22.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
273
+ "model.layers.22.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
274
+ "model.layers.22.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
275
+ "model.layers.22.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
276
+ "model.layers.22.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
277
+ "model.layers.22.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
278
+ "model.layers.23.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
279
+ "model.layers.23.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
280
+ "model.layers.23.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
281
+ "model.layers.23.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
282
+ "model.layers.23.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
283
+ "model.layers.23.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
284
+ "model.layers.23.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
285
+ "model.layers.23.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
286
+ "model.layers.23.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
287
+ "model.layers.23.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
288
+ "model.layers.23.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
289
+ "model.layers.23.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
290
+ "model.layers.23.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
291
+ "model.layers.23.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
292
+ "model.layers.23.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
293
+ "model.layers.23.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
294
+ "model.layers.23.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
295
+ "model.layers.24.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
296
+ "model.layers.24.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
297
+ "model.layers.24.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
298
+ "model.layers.24.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
299
+ "model.layers.24.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
300
+ "model.layers.24.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
301
+ "model.layers.24.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
302
+ "model.layers.24.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
303
+ "model.layers.24.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
304
+ "model.layers.24.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
305
+ "model.layers.24.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
306
+ "model.layers.24.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
307
+ "model.layers.24.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
308
+ "model.layers.24.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
309
+ "model.layers.24.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
310
+ "model.layers.24.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
311
+ "model.layers.24.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
312
+ "model.layers.25.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
313
+ "model.layers.25.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
314
+ "model.layers.25.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
315
+ "model.layers.25.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
316
+ "model.layers.25.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
317
+ "model.layers.25.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
318
+ "model.layers.25.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
319
+ "model.layers.25.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
320
+ "model.layers.25.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
321
+ "model.layers.25.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
322
+ "model.layers.25.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
323
+ "model.layers.25.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
324
+ "model.layers.25.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
325
+ "model.layers.25.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
326
+ "model.layers.25.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
327
+ "model.layers.25.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
328
+ "model.layers.25.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
329
+ "model.layers.26.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
330
+ "model.layers.26.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
331
+ "model.layers.26.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
332
+ "model.layers.26.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
333
+ "model.layers.26.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
334
+ "model.layers.26.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
335
+ "model.layers.26.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
336
+ "model.layers.26.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
337
+ "model.layers.26.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
338
+ "model.layers.26.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
339
+ "model.layers.26.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
340
+ "model.layers.26.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
341
+ "model.layers.26.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
342
+ "model.layers.26.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
343
+ "model.layers.26.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
344
+ "model.layers.26.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
345
+ "model.layers.26.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
346
+ "model.layers.27.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
347
+ "model.layers.27.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
348
+ "model.layers.27.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
349
+ "model.layers.27.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
350
+ "model.layers.27.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
351
+ "model.layers.27.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
352
+ "model.layers.27.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
353
+ "model.layers.27.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
354
+ "model.layers.27.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
355
+ "model.layers.27.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
356
+ "model.layers.27.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
357
+ "model.layers.27.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
358
+ "model.layers.27.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
359
+ "model.layers.27.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
360
+ "model.layers.27.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
361
+ "model.layers.27.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
362
+ "model.layers.27.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
363
+ "model.layers.28.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
364
+ "model.layers.28.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
365
+ "model.layers.28.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
366
+ "model.layers.28.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
367
+ "model.layers.28.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
368
+ "model.layers.28.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
369
+ "model.layers.28.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
370
+ "model.layers.28.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
371
+ "model.layers.28.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
372
+ "model.layers.28.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
373
+ "model.layers.28.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
374
+ "model.layers.28.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
375
+ "model.layers.28.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
376
+ "model.layers.28.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
377
+ "model.layers.28.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
378
+ "model.layers.28.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
379
+ "model.layers.28.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
380
+ "model.layers.29.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
381
+ "model.layers.29.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
382
+ "model.layers.29.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
383
+ "model.layers.29.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
384
+ "model.layers.29.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
385
+ "model.layers.29.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
386
+ "model.layers.29.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
387
+ "model.layers.29.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
388
+ "model.layers.29.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
389
+ "model.layers.29.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
390
+ "model.layers.29.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
391
+ "model.layers.29.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
392
+ "model.layers.29.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
393
+ "model.layers.29.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
394
+ "model.layers.29.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
395
+ "model.layers.29.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
396
+ "model.layers.29.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
397
+ "model.layers.3.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
398
+ "model.layers.3.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
399
+ "model.layers.3.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
400
+ "model.layers.3.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
401
+ "model.layers.3.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
402
+ "model.layers.3.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
403
+ "model.layers.3.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
404
+ "model.layers.3.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
405
+ "model.layers.3.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
406
+ "model.layers.3.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
407
+ "model.layers.3.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
408
+ "model.layers.3.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
409
+ "model.layers.3.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
410
+ "model.layers.3.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
411
+ "model.layers.3.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
412
+ "model.layers.3.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
413
+ "model.layers.3.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
414
+ "model.layers.30.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
415
+ "model.layers.30.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
416
+ "model.layers.30.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
417
+ "model.layers.30.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
418
+ "model.layers.30.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
419
+ "model.layers.30.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
420
+ "model.layers.30.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
421
+ "model.layers.30.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
422
+ "model.layers.30.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
423
+ "model.layers.30.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
424
+ "model.layers.30.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
425
+ "model.layers.30.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
426
+ "model.layers.30.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
427
+ "model.layers.30.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
428
+ "model.layers.30.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
429
+ "model.layers.30.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
430
+ "model.layers.30.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
431
+ "model.layers.31.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
432
+ "model.layers.31.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
433
+ "model.layers.31.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
434
+ "model.layers.31.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
435
+ "model.layers.31.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
436
+ "model.layers.31.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
437
+ "model.layers.31.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
438
+ "model.layers.31.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
439
+ "model.layers.31.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
440
+ "model.layers.31.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
441
+ "model.layers.31.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
442
+ "model.layers.31.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
443
+ "model.layers.31.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
444
+ "model.layers.31.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
445
+ "model.layers.31.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
446
+ "model.layers.31.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
447
+ "model.layers.31.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
448
+ "model.layers.4.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
449
+ "model.layers.4.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
450
+ "model.layers.4.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
451
+ "model.layers.4.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
452
+ "model.layers.4.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
453
+ "model.layers.4.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
454
+ "model.layers.4.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
455
+ "model.layers.4.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
456
+ "model.layers.4.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
457
+ "model.layers.4.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
458
+ "model.layers.4.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
459
+ "model.layers.4.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
460
+ "model.layers.4.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
461
+ "model.layers.4.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
462
+ "model.layers.4.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
463
+ "model.layers.4.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
464
+ "model.layers.4.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
465
+ "model.layers.5.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
466
+ "model.layers.5.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
467
+ "model.layers.5.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
468
+ "model.layers.5.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
469
+ "model.layers.5.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
470
+ "model.layers.5.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
471
+ "model.layers.5.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
472
+ "model.layers.5.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
473
+ "model.layers.5.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
474
+ "model.layers.5.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
475
+ "model.layers.5.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
476
+ "model.layers.5.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
477
+ "model.layers.5.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
478
+ "model.layers.5.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
479
+ "model.layers.5.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
480
+ "model.layers.5.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
481
+ "model.layers.5.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
482
+ "model.layers.6.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
483
+ "model.layers.6.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
484
+ "model.layers.6.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
485
+ "model.layers.6.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
486
+ "model.layers.6.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
487
+ "model.layers.6.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
488
+ "model.layers.6.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
489
+ "model.layers.6.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
490
+ "model.layers.6.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
491
+ "model.layers.6.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
492
+ "model.layers.6.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
493
+ "model.layers.6.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
494
+ "model.layers.6.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
495
+ "model.layers.6.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
496
+ "model.layers.6.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
497
+ "model.layers.6.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
498
+ "model.layers.6.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
499
+ "model.layers.7.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
500
+ "model.layers.7.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
501
+ "model.layers.7.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
502
+ "model.layers.7.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
503
+ "model.layers.7.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
504
+ "model.layers.7.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
505
+ "model.layers.7.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
506
+ "model.layers.7.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
507
+ "model.layers.7.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
508
+ "model.layers.7.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
509
+ "model.layers.7.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
510
+ "model.layers.7.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
511
+ "model.layers.7.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
512
+ "model.layers.7.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
513
+ "model.layers.7.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
514
+ "model.layers.7.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
515
+ "model.layers.7.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
516
+ "model.layers.8.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
517
+ "model.layers.8.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
518
+ "model.layers.8.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
519
+ "model.layers.8.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
520
+ "model.layers.8.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
521
+ "model.layers.8.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
522
+ "model.layers.8.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
523
+ "model.layers.8.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
524
+ "model.layers.8.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
525
+ "model.layers.8.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
526
+ "model.layers.8.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
527
+ "model.layers.8.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
528
+ "model.layers.8.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
529
+ "model.layers.8.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
530
+ "model.layers.8.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
531
+ "model.layers.8.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
532
+ "model.layers.8.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
533
+ "model.layers.9.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
534
+ "model.layers.9.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
535
+ "model.layers.9.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
536
+ "model.layers.9.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
537
+ "model.layers.9.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
538
+ "model.layers.9.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
539
+ "model.layers.9.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
540
+ "model.layers.9.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
541
+ "model.layers.9.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
542
+ "model.layers.9.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
543
+ "model.layers.9.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
544
+ "model.layers.9.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
545
+ "model.layers.9.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
546
+ "model.layers.9.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
547
+ "model.layers.9.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
548
+ "model.layers.9.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
549
+ "model.layers.9.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
550
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin",
551
+ "model.tok_embeddings.weight": "pytorch_model-00001-of-00002.bin",
552
+ "output.weight": "pytorch_model-00002-of-00002.bin",
553
+ "plora_glb_GN": "pytorch_model-00001-of-00002.bin",
554
+ "plora_sub_GN": "pytorch_model-00001-of-00002.bin",
555
+ "vision_proj.0.bias": "pytorch_model-00002-of-00002.bin",
556
+ "vision_proj.0.weight": "pytorch_model-00002-of-00002.bin",
557
+ "vision_proj.2.bias": "pytorch_model-00002-of-00002.bin",
558
+ "vision_proj.2.weight": "pytorch_model-00002-of-00002.bin",
559
+ "vit.vision_tower.vision_model.embeddings.class_embedding": "pytorch_model-00002-of-00002.bin",
560
+ "vit.vision_tower.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00002-of-00002.bin",
561
+ "vit.vision_tower.vision_model.embeddings.position_embedding.weight": "pytorch_model-00002-of-00002.bin",
562
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
563
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
564
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
565
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
566
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
567
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
568
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
569
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
570
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
571
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
572
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
573
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
574
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
575
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
576
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
577
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
578
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
579
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
580
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
581
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
582
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
583
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
584
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
585
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
586
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
587
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
588
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
589
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
590
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
591
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
592
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
593
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
594
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
595
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
596
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
597
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
598
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
599
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
600
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
601
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
602
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
603
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
604
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
605
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
606
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
607
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
608
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
609
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
610
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
611
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
612
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
613
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
614
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
615
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
616
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
617
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
618
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
619
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
620
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
621
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
622
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
623
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
624
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
625
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
626
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
627
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
628
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
629
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
630
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
631
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
632
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
633
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
634
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
635
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
636
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
637
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
638
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
639
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
640
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
641
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
642
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
643
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
644
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
645
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
646
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
647
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
648
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
649
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
650
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
651
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
652
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
653
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
654
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
655
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
656
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
657
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
658
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
659
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
660
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
661
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
662
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
663
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
664
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
665
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
666
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
667
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
668
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
669
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
670
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
671
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
672
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
673
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
674
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
675
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
676
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
677
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
678
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
679
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
680
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
681
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
682
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
683
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
684
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
685
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
686
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
687
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
688
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
689
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
690
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
691
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
692
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
693
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
694
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
695
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
696
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
697
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
698
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
699
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
700
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
701
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
702
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
703
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
704
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
705
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
706
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
707
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
708
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
709
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
710
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
711
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
712
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
713
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
714
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
715
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
716
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
717
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
718
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
719
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
720
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
721
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
722
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
723
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
724
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
725
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
726
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
727
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
728
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
729
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
730
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
731
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
732
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
733
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
734
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
735
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
736
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
737
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
738
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
739
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
740
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
741
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
742
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
743
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
744
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
745
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
746
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
747
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
748
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
749
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
750
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
751
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
752
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
753
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
754
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
755
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
756
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
757
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
758
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
759
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
760
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
761
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
762
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
763
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
764
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
765
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
766
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
767
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
768
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
769
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
770
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
771
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
772
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
773
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
774
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
775
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
776
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
777
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
778
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
779
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
780
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
781
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
782
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
783
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
784
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
785
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
786
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
787
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
788
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
789
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
790
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
791
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
792
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
793
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
794
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
795
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
796
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
797
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
798
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
799
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
800
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
801
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
802
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
803
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
804
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
805
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
806
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
807
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
808
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
809
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
810
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
811
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
812
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
813
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
814
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
815
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
816
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
817
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
818
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
819
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
820
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
821
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
822
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
823
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
824
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
825
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
826
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
827
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
828
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
829
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
830
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
831
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
832
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
833
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
834
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
835
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
836
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
837
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
838
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
839
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
840
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
841
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
842
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
843
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
844
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
845
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
846
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
847
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
848
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
849
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
850
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
851
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
852
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
853
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
854
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
855
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
856
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
857
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
858
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
859
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
860
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
861
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
862
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
863
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
864
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
865
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
866
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
867
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
868
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
869
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
870
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
871
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
872
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
873
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
874
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
875
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
876
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
877
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
878
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
879
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
880
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
881
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
882
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
883
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
884
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
885
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
886
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
887
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
888
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
889
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
890
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
891
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
892
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
893
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
894
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
895
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
896
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
897
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
898
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
899
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
900
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
901
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
902
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
903
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
904
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
905
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
906
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
907
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
908
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
909
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
910
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
911
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
912
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
913
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
914
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
915
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
916
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
917
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
918
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
919
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
920
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
921
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
922
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
923
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
924
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
925
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
926
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
927
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
928
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
929
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
930
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00002-of-00002.bin",
931
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00002-of-00002.bin",
932
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00002-of-00002.bin",
933
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00002-of-00002.bin",
934
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00002-of-00002.bin",
935
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00002-of-00002.bin",
936
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00002-of-00002.bin",
937
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00002-of-00002.bin",
938
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00002.bin",
939
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
940
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00002-of-00002.bin",
941
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00002-of-00002.bin",
942
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00002.bin",
943
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
944
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00002.bin",
945
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
946
+ "vit.vision_tower.vision_model.pre_layrnorm.bias": "pytorch_model-00002-of-00002.bin",
947
+ "vit.vision_tower.vision_model.pre_layrnorm.weight": "pytorch_model-00002-of-00002.bin"
948
+ }
949
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>"
9
+ ],
10
+ "bos_token": {
11
+ "content": "<s>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "eos_token": {
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "</s>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "unk_token": {
32
+ "content": "<unk>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization classes for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, List, Optional, Tuple
22
+
23
+ import sentencepiece as spm
24
+ from transformers.tokenization_utils import PreTrainedTokenizer
25
+ from transformers.utils import logging
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
30
+
31
+ PRETRAINED_VOCAB_FILES_MAP = {}
32
+
33
+
34
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
35
+ class InternLM2Tokenizer(PreTrainedTokenizer):
36
+ """
37
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
38
+
39
+ Args:
40
+ vocab_file (`str`):
41
+ Path to the vocabulary file.
42
+ """
43
+
44
+ vocab_files_names = VOCAB_FILES_NAMES
45
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
46
+ model_input_names = ["input_ids", "attention_mask"]
47
+ _auto_class = "AutoTokenizer"
48
+
49
+ def __init__(
50
+ self,
51
+ vocab_file,
52
+ unk_token="<unk>",
53
+ bos_token="<s>",
54
+ eos_token="</s>",
55
+ pad_token="</s>",
56
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
57
+ add_bos_token=True,
58
+ add_eos_token=False,
59
+ decode_with_prefix_space=False,
60
+ clean_up_tokenization_spaces=False,
61
+ **kwargs,
62
+ ):
63
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
64
+ self.vocab_file = vocab_file
65
+ self.add_bos_token = add_bos_token
66
+ self.add_eos_token = add_eos_token
67
+ self.decode_with_prefix_space = decode_with_prefix_space
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+ self._no_prefix_space_tokens = None
71
+ super().__init__(
72
+ bos_token=bos_token,
73
+ eos_token=eos_token,
74
+ unk_token=unk_token,
75
+ pad_token=pad_token,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ **kwargs,
78
+ )
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
85
+ return self._no_prefix_space_tokens
86
+
87
+ @property
88
+ def vocab_size(self):
89
+ """Returns vocab size"""
90
+ return self.sp_model.get_piece_size()
91
+
92
+ @property
93
+ def bos_token_id(self) -> Optional[int]:
94
+ return self.sp_model.bos_id()
95
+
96
+ @property
97
+ def eos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.eos_id()
99
+
100
+ def get_vocab(self):
101
+ """Returns vocab as a dict"""
102
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
+ vocab.update(self.added_tokens_encoder)
104
+ return vocab
105
+
106
+ def _tokenize(self, text):
107
+ """Returns a tokenized string."""
108
+ return self.sp_model.encode(text, out_type=str)
109
+
110
+ def _convert_token_to_id(self, token):
111
+ """Converts a token (str) in an id using the vocab."""
112
+ return self.sp_model.piece_to_id(token)
113
+
114
+ def _convert_id_to_token(self, index):
115
+ """Converts an index (integer) in a token (str) using the vocab."""
116
+ token = self.sp_model.IdToPiece(index)
117
+ return token
118
+
119
+ def _maybe_add_prefix_space(self, tokens, decoded):
120
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
121
+ return " " + decoded
122
+ else:
123
+ return decoded
124
+
125
+ def convert_tokens_to_string(self, tokens):
126
+ """Converts a sequence of tokens (string) in a single string."""
127
+ current_sub_tokens = []
128
+ out_string = ""
129
+ prev_is_special = False
130
+ for token in tokens:
131
+ # make sure that special tokens are not decoded using sentencepiece model
132
+ if token in self.all_special_tokens:
133
+ if not prev_is_special:
134
+ out_string += " "
135
+ out_string += self.sp_model.decode(current_sub_tokens) + token
136
+ prev_is_special = True
137
+ current_sub_tokens = []
138
+ else:
139
+ current_sub_tokens.append(token)
140
+ prev_is_special = False
141
+ out_string += self.sp_model.decode(current_sub_tokens)
142
+ out_string = self.clean_up_tokenization(out_string)
143
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
144
+ return out_string[1:]
145
+
146
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
147
+ """
148
+ Save the vocabulary and special tokens file to a directory.
149
+
150
+ Args:
151
+ save_directory (`str`):
152
+ The directory in which to save the vocabulary.
153
+
154
+ Returns:
155
+ `Tuple(str)`: Paths to the files saved.
156
+ """
157
+ if not os.path.isdir(save_directory):
158
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
159
+ return
160
+ out_vocab_file = os.path.join(
161
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
162
+ )
163
+
164
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
165
+ copyfile(self.vocab_file, out_vocab_file)
166
+ elif not os.path.isfile(self.vocab_file):
167
+ with open(out_vocab_file, "wb") as fi:
168
+ content_spiece_model = self.sp_model.serialized_model_proto()
169
+ fi.write(content_spiece_model)
170
+
171
+ return (out_vocab_file,)
172
+
173
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
174
+ if self.add_bos_token:
175
+ bos_token_ids = [self.bos_token_id]
176
+ else:
177
+ bos_token_ids = []
178
+
179
+ output = bos_token_ids + token_ids_0
180
+
181
+ if token_ids_1 is not None:
182
+ output = output + token_ids_1
183
+
184
+ if self.add_eos_token:
185
+ output = output + [self.eos_token_id]
186
+
187
+ return output
188
+
189
+ def get_special_tokens_mask(
190
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
191
+ ) -> List[int]:
192
+ """
193
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
194
+ special tokens using the tokenizer `prepare_for_model` method.
195
+
196
+ Args:
197
+ token_ids_0 (`List[int]`):
198
+ List of IDs.
199
+ token_ids_1 (`List[int]`, *optional*):
200
+ Optional second list of IDs for sequence pairs.
201
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
202
+ Whether or not the token list is already formatted with special tokens for the model.
203
+
204
+ Returns:
205
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
206
+ """
207
+ if already_has_special_tokens:
208
+ return super().get_special_tokens_mask(
209
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
210
+ )
211
+
212
+ if token_ids_1 is None:
213
+ return [1] + ([0] * len(token_ids_0)) + [1]
214
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
215
+
216
+ def create_token_type_ids_from_sequences(
217
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
218
+ ) -> List[int]:
219
+ """
220
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
221
+ use of token type ids, therefore a list of zeros is returned.
222
+
223
+ Args:
224
+ token_ids_0 (`List[int]`):
225
+ List of IDs.
226
+ token_ids_1 (`List[int]`, *optional*):
227
+ Optional second list of IDs for sequence pairs.
228
+
229
+ Returns:
230
+ `List[int]`: List of zeros.
231
+ """
232
+ eos = [self.eos_token_id]
233
+
234
+ if token_ids_1 is None:
235
+ return len(token_ids_0 + eos) * [0]
236
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ }
75
+ },
76
+ "additional_special_tokens": [
77
+ "<|im_start|>",
78
+ "<|im_end|>",
79
+ "<|action_start|>",
80
+ "<|action_end|>",
81
+ "<|interpreter|>",
82
+ "<|plugin|>"
83
+ ],
84
+ "auto_map": {
85
+ "AutoTokenizer": [
86
+ "tokenization_internlm2.InternLM2Tokenizer",
87
+ null
88
+ ]
89
+ },
90
+ "bos_token": "<s>",
91
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
92
+ "clean_up_tokenization_spaces": false,
93
+ "eos_token": "</s>",
94
+ "model_max_length": 1000000000000000019884624838656,
95
+ "pad_token": "</s>",
96
+ "padding_side": "right",
97
+ "tokenizer_class": "InternLM2Tokenizer",
98
+ "unk_token": "<unk>"
99
+ }