DamarJati commited on
Commit
d439894
1 Parent(s): 9f31ec6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -78
README.md CHANGED
@@ -1,80 +1,9 @@
1
  ---
2
- license: apache-2.0
3
- base_model: microsoft/swin-tiny-patch4-window7-224
4
- tags:
5
- - generated_from_trainer
6
  datasets:
7
- - imagefolder
8
- metrics:
9
- - accuracy
10
- model-index:
11
- - name: swin-tiny-patch4-window7-224-finetuned-eurosat
12
- results:
13
- - task:
14
- name: Image Classification
15
- type: image-classification
16
- dataset:
17
- name: imagefolder
18
- type: imagefolder
19
- config: default
20
- split: train
21
- args: default
22
- metrics:
23
- - name: Accuracy
24
- type: accuracy
25
- value: 0.9884393063583815
26
- ---
27
-
28
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
- should probably proofread and complete it, then remove this comment. -->
30
-
31
- # swin-tiny-patch4-window7-224-finetuned-eurosat
32
-
33
- This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
- It achieves the following results on the evaluation set:
35
- - Loss: 0.0338
36
- - Accuracy: 0.9884
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
-
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
-
52
- ### Training hyperparameters
53
-
54
- The following hyperparameters were used during training:
55
- - learning_rate: 5e-05
56
- - train_batch_size: 32
57
- - eval_batch_size: 32
58
- - seed: 42
59
- - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 128
61
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
- - lr_scheduler_type: linear
63
- - lr_scheduler_warmup_ratio: 0.1
64
- - num_epochs: 3
65
-
66
- ### Training results
67
-
68
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 0.4088 | 0.98 | 12 | 0.0338 | 0.9884 |
71
- | 0.0542 | 1.96 | 24 | 0.0241 | 0.9884 |
72
- | 0.0327 | 2.94 | 36 | 0.0156 | 0.9884 |
73
-
74
-
75
- ### Framework versions
76
-
77
- - Transformers 4.33.3
78
- - Pytorch 2.0.1+cu118
79
- - Datasets 2.14.5
80
- - Tokenizers 0.13.3
 
1
  ---
 
 
 
 
2
  datasets:
3
+ - DamarJati/NSFW-filter-DecentScan
4
+ language:
5
+ - en
6
+ pipeline_tag: image-classification
7
+ tags:
8
+ - art
9
+ ---