---
library_name: transformers
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML
tags:
- generated_from_trainer
model-index:
- name: l3.1-8b-dans-instruct
results: []
license: apache-2.0
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: l3.1-8b-dans-instruct
wandb_watch:
wandb_run_id:
wandb_log_model:
# where to save the finished model to
output_dir: ./l3.1-8b-dans-instruct
# dataset settings (local or huggingface repo)
datasets:
- path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
type: sharegpt
conversation: chatml
- path: AquaV/Energetic-Materials-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/Chemical-Biological-Safety-Applications-Sharegpt
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Mathmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Benchmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Codemaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Taskmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-ASCIIMaxx-Wordart
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Prosemaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Toolmaxx
type: sharegpt
conversation: chatml
chat_template: chatml
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
dataset_prepared_path: ./l3.1-8b-dans-instruct-data
val_set_size: 0.03
lora_model_dir:
sequence_len: 8192
# use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing: true
eval_sample_packing: true
# you can set these packing optimizations AFTER starting a training at least once.
# The trainer will provide recommended values for these values.
pad_to_sequence_len: true
#rope_scaling:
#type: # linear | dynamic
#factor: # float (2 for 2x)
adapter: # blank for full finetune
lora_r: 64
lora_alpha: 64
lora_dropout: 0.2
lora_target_linear: True
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lora_modules_to_save:
- embed_tokens
- lm_head
lora_fan_in_fan_out:
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0000015
cosine_min_lr_ratio:
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 15
eval_steps: 25
# save_steps: 100
saves_per_epoch: 3
debug: false
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|im_end|>
```
# l3.1-8b-dans-instruct
This model is a fine-tuned version of [Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML](https://huggingface.co/Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7432
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0783 | 0.0077 | 1 | 1.0298 |
| 0.8528 | 0.1931 | 25 | 0.8603 |
| 0.7776 | 0.3862 | 50 | 0.7925 |
| 0.7089 | 0.5793 | 75 | 0.7697 |
| 0.6868 | 0.7724 | 100 | 0.7584 |
| 0.7158 | 0.9655 | 125 | 0.7524 |
| 0.6938 | 1.1566 | 150 | 0.7488 |
| 0.733 | 1.3499 | 175 | 0.7464 |
| 0.7956 | 1.5433 | 200 | 0.7450 |
| 0.6886 | 1.7366 | 225 | 0.7442 |
| 0.9065 | 1.9299 | 250 | 0.7437 |
| 0.7851 | 2.1210 | 275 | 0.7434 |
| 0.7256 | 2.3142 | 300 | 0.7433 |
| 0.7832 | 2.5074 | 325 | 0.7432 |
| 0.7317 | 2.7006 | 350 | 0.7432 |
| 0.7112 | 2.8937 | 375 | 0.7432 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1