Deathsquad10 commited on
Commit
c8a4661
โ€ข
1 Parent(s): 76d7dbf

Create Readme.md

Browse files
Files changed (1) hide show
  1. Readme.md +58 -0
Readme.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ - HuggingFaceH4/ultrachat_200k
7
+ - HuggingFaceH4/ultrafeedback_binarized
8
+ language:
9
+ - en
10
+ ---
11
+ widget:
12
+ - text: >
13
+ <|system|>
14
+
15
+ You are a chatbot who can help code!</s>
16
+
17
+ <|user|>
18
+ <div align="center">
19
+
20
+ #TinyLlama-1.1B
21
+ https://github.com/jzhang38/TinyLlama
22
+
23
+ The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐Ÿš€๐Ÿš€. The training has started on 2023-09-01.
24
+
25
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
26
+
27
+ This Model
28
+ This is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. We follow HF's Zephyr's training recipe. The model was " initially fine-tuned on a variant of the UltraChat dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with ๐Ÿค— TRL's DPOTrainer on the openbmb/UltraFeedback dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
29
+
30
+ How to use
31
+ You will need the transformers>=4.34 Do check the TinyLlama github page for more information.
32
+
33
+ # Install transformers from source - only needed for versions <= v4.34
34
+ # pip install git+https://github.com/huggingface/transformers.git
35
+ # pip install accelerate
36
+
37
+ import torch
38
+ from transformers import pipeline
39
+
40
+ pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
41
+
42
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
43
+ messages = [
44
+ {
45
+ "role": "system",
46
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
47
+ },
48
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
49
+ ]
50
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
51
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
52
+ print(outputs[0]["generated_text"])
53
+ # <|system|>
54
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
55
+ # <|user|>
56
+ # How many helicopters can a human eat in one sitting?</s>
57
+ # <|assistant|>
58
+ # ...