DimensionSTP
commited on
Commit
•
fc6c627
1
Parent(s):
35eaad6
Delete README_original.md
Browse files- README_original.md +0 -125
README_original.md
DELETED
@@ -1,125 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- ko
|
4 |
-
- en
|
5 |
-
pipeline_tag: text-generation
|
6 |
-
inference: false
|
7 |
-
tags:
|
8 |
-
- solar
|
9 |
-
- mistral
|
10 |
-
- pytorch
|
11 |
-
- solar-ko
|
12 |
-
library_name: transformers
|
13 |
-
license: apache-2.0
|
14 |
-
---
|
15 |
-
|
16 |
-
**Update Log**
|
17 |
-
|
18 |
-
- 2024.01.08: Initial Test version Release of Solar-Ko
|
19 |
-
|
20 |
-
# **Open-Solar-Ko** ⭐🇰🇷
|
21 |
-
|
22 |
-
Solar-Ko represents an advanced iteration of the upstage/SOLAR-10.7B-v1.0 model, featuring an expanded vocabulary and the inclusion of a Korean corpus for enhanced pretraining.
|
23 |
-
|
24 |
-
Open-Solar-Ko exclusively utilizes publicly accessible Korean corpora, including sources such as [AI Hub](https://www.aihub.or.kr), [Modu Corpus, 모두의 말뭉치](https://corpus.korean.go.kr/), and [Korean Wikipedia](https://dumps.wikimedia.org/kowiki/).
|
25 |
-
|
26 |
-
As training was conducted solely with publicly available corpora, this model is open for unrestricted use by everyone, adhering to the Apache2.0 open source License.
|
27 |
-
|
28 |
-
## Model Details
|
29 |
-
|
30 |
-
**Model Developers:** Junbum Lee (Beomi)
|
31 |
-
|
32 |
-
**Variations:** Solar-Ko is available with one parameter sizes — 10B with Continual Pretrained version.
|
33 |
-
|
34 |
-
**Input:** The model accepts only text input.
|
35 |
-
|
36 |
-
**Output:** The model produces text output exclusively.
|
37 |
-
|
38 |
-
**Model Architecture:**
|
39 |
-
|
40 |
-
SOLAR-KO-10.7B is an auto-regressive language model that leverages an optimized transformer architecture derived from Llama-2.
|
41 |
-
|
42 |
-
| |Training Data|Parameters|Content Length|GQA|Tokens|Learning Rate|
|
43 |
-
|---|---|---|---|---|---|---|
|
44 |
-
|SOLAR-KO-10.7B|*A curated mix of Publicly Accessible Korean Corpora*|10.7B|4k|O|>15B*|5e<sup>-5</sup>|
|
45 |
-
|
46 |
-
**Training Corpus**
|
47 |
-
|
48 |
-
The model was trained using selected datasets from AIHub and Modu Corpus. Detailed information about the training datasets is available below:
|
49 |
-
|
50 |
-
- AI Hub: [corpus/AI_HUB](./corpus/AI_HUB)
|
51 |
-
- Only the `Training` segment of the data was used.
|
52 |
-
- The `Validation` and `Test` segments were deliberately excluded.
|
53 |
-
- Modu Corpus: [corpus/MODU_CORPUS](./corpus/MODU_CORPUS)
|
54 |
-
|
55 |
-
The final JSONL dataset used to train this model is approximately 61GB in size.
|
56 |
-
|
57 |
-
Total token count: Approximately 15 billion tokens (*using the expanded tokenizer. With the original SOLAR tokenizer, >60 billion tokens.)
|
58 |
-
|
59 |
-
**Vocab Expansion**
|
60 |
-
|
61 |
-
| Model Name | Vocabulary Size | Description |
|
62 |
-
| --- | --- | --- |
|
63 |
-
| Original Solar | 32000 | Sentencepiece BPE |
|
64 |
-
| **Expanded SOLAR-KO-10.7B** | 46592 | Sentencepiece BPE. Added Korean vocab and merges |
|
65 |
-
|
66 |
-
**Tokenizing "안녕하세요, 오늘은 날씨가 좋네요."**
|
67 |
-
|
68 |
-
- SOLAR-10.7B: 26 tokens
|
69 |
-
- SOLAR-KO-10.7b: 8 tokens
|
70 |
-
|
71 |
-
| Model | Tokens |
|
72 |
-
| --- | --- |
|
73 |
-
| SOLAR-10.7B | `['▁', '안', '<0xEB>', '<0x85>', '<0x95>', '하', '세', '요', ',', '▁', '오', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '날', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '좋', '네', '요', '.']` |
|
74 |
-
| SOLAR-KO-10.7B | `['▁안녕', '하세요', ',', '▁오늘은', '▁날', '씨가', '▁좋네요', '.']` |
|
75 |
-
|
76 |
-
**Tokenizing "Meet 10.7B Solar: Elevating Performance with Upstage Depth UP Scaling!"**
|
77 |
-
|
78 |
-
- SOLAR-10.7B: 22 tokens
|
79 |
-
- SOLAR-KO-10.7b: 22 tokens
|
80 |
-
|
81 |
-
| Model | Tokens |
|
82 |
-
| --- | --- |
|
83 |
-
| SOLAR-10.7B | `['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!']` |
|
84 |
-
| SOLAR-KO-10.7B | `['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!']` |
|
85 |
-
|
86 |
-
# LICENSE
|
87 |
-
|
88 |
-
Apache 2.0
|
89 |
-
|
90 |
-
# **Model Benchmark**
|
91 |
-
|
92 |
-
## LM Eval Harness - Korean (polyglot branch)
|
93 |
-
|
94 |
-
- Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
|
95 |
-
|
96 |
-
| | 0 | 5 | 10 | 50 |
|
97 |
-
|:---------------------------------|---------:|---------:|---------:|---------:|
|
98 |
-
| kobest_boolq (macro_f1) | 0.853949 | 0.88098 | 0.898139 | 0.902354 |
|
99 |
-
| kobest_copa (macro_f1) | 0.804531 | 0.826736 | 0.837656 | 0.860899 |
|
100 |
-
| kobest_hellaswag (macro_f1) | 0.507174 | 0.500983 | 0.487287 | 0.512182 |
|
101 |
-
| kobest_sentineg (macro_f1) | 0.3517 | 0.972291 | 0.977321 | 0.984884 |
|
102 |
-
| kohatespeech (macro_f1) | 0.258111 | 0.403957 | 0.386808 | 0.462393 |
|
103 |
-
| kohatespeech_apeach (macro_f1) | 0.337667 | 0.651697 | 0.705337 | 0.827757 |
|
104 |
-
| kohatespeech_gen_bias (macro_f1) | 0.124535 | 0.503464 | 0.498501 | 0.443218 |
|
105 |
-
| korunsmile (f1) | 0.3814 | 0.356939 | 0.369989 | 0.296193 |
|
106 |
-
| nsmc (acc) | 0.5356 | 0.87162 | 0.88654 | 0.89632 |
|
107 |
-
| pawsx_ko (acc) | 0.5435 | 0.5245 | 0.5315 | 0.5385 |
|
108 |
-
|
109 |
-
## Citation
|
110 |
-
|
111 |
-
```
|
112 |
-
@misc {solar_ko_junbum_2023,
|
113 |
-
author = { {L. Junbum} },
|
114 |
-
title = { Solar-Ko-10.7b },
|
115 |
-
year = 2024,
|
116 |
-
url = { https://huggingface.co/beomi/SOLAR-KO-10.7B },
|
117 |
-
publisher = { Hugging Face }
|
118 |
-
}
|
119 |
-
|
120 |
-
```
|
121 |
-
|
122 |
-
## Acknowledgements
|
123 |
-
|
124 |
-
- Training support was provided by the [TPU Research Cloud](https://sites.research.google/trc/) program.
|
125 |
-
- The training corpus includes data from [AI Hub](https://www.aihub.or.kr/), [Modu Corpus](https://corpus.korean.go.kr/), and [Korean Wikipedia](https://dumps.wikimedia.org/kowiki/).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|