Update modeling_moe_mistral.py
Browse files- modeling_moe_mistral.py +3 -4
modeling_moe_mistral.py
CHANGED
@@ -196,9 +196,7 @@ class FeedForward(nn.Module):
|
|
196 |
)
|
197 |
|
198 |
def forward(self, x):
|
199 |
-
|
200 |
-
x = x.to(self.w1.weight.device)
|
201 |
-
return self.w2(F.silu(self.w1(x)) * self.w3(x)).to(device)
|
202 |
|
203 |
|
204 |
class MoE(nn.Module):
|
@@ -217,8 +215,9 @@ class MoE(nn.Module):
|
|
217 |
orig_shape = x.shape
|
218 |
x = x.view(-1, x.shape[-1])
|
219 |
|
220 |
-
scores = self.gate(x)
|
221 |
expert_weights, expert_indices = torch.topk(scores, self.num_experts_per_token, dim=-1)
|
|
|
222 |
flat_expert_indices = expert_indices.view(-1)
|
223 |
|
224 |
x = x.repeat_interleave(self.num_experts_per_token, dim=0)
|
|
|
196 |
)
|
197 |
|
198 |
def forward(self, x):
|
199 |
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
200 |
|
201 |
|
202 |
class MoE(nn.Module):
|
|
|
215 |
orig_shape = x.shape
|
216 |
x = x.view(-1, x.shape[-1])
|
217 |
|
218 |
+
scores = self.gate(x)
|
219 |
expert_weights, expert_indices = torch.topk(scores, self.num_experts_per_token, dim=-1)
|
220 |
+
expert_weights = expert_weights.softmax(dim=-1)
|
221 |
flat_expert_indices = expert_indices.view(-1)
|
222 |
|
223 |
x = x.repeat_interleave(self.num_experts_per_token, dim=0)
|