File size: 3,432 Bytes
f6c95b2
696b4b4
 
f6c95b2
 
696b4b4
 
f6c95b2
1e1718e
 
 
f121e94
f6c95b2
314e8b4
f6c95b2
 
23c6b8f
f121e94
 
23c6b8f
 
 
 
834966e
23c6b8f
f121e94
 
 
 
 
 
 
e56e035
 
 
 
 
 
 
f121e94
 
 
 
 
 
f6c95b2
 
 
 
 
 
 
696b4b4
f6c95b2
 
 
 
7dd775a
f6c95b2
e56e035
 
1936595
e56e035
 
f6c95b2
e56e035
f6c95b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
language:
- hsb
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- hsb
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-hsb-v1
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: hsb
    metrics:
    - name: Test WER
      type: wer
      value: 0.4393
    - name: Test CER
      type: cer
      value: 0.1036
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: hsb
    metrics:
    - name: Test WER
      type: wer
      value: NA
    - name: Test CER
      type: cer
      value: NA
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-hsb-v1

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5684
- Wer: 0.4402

### Evaluation Commands

1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v1 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs

2. To evaluate on speech-recognition-community-v2/dev_data

Upper Sorbian language isn't available in speech-recognition-community-v2/dev_data


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00045
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 8.972         | 3.23  | 100  | 3.7498          | 1.0    |
| 3.3401        | 6.45  | 200  | 3.2320          | 1.0    |
| 3.2046        | 9.68  | 300  | 3.1741          | 0.9806 |
| 2.4031        | 12.9  | 400  | 1.0579          | 0.8996 |
| 1.0427        | 16.13 | 500  | 0.7989          | 0.7557 |
| 0.741         | 19.35 | 600  | 0.6405          | 0.6299 |
| 0.5699        | 22.58 | 700  | 0.6129          | 0.5928 |
| 0.4607        | 25.81 | 800  | 0.6548          | 0.5695 |
| 0.3827        | 29.03 | 900  | 0.6268          | 0.5190 |
| 0.3282        | 32.26 | 1000 | 0.5919          | 0.5016 |
| 0.2764        | 35.48 | 1100 | 0.5953          | 0.4805 |
| 0.2335        | 38.71 | 1200 | 0.5717          | 0.4728 |
| 0.2106        | 41.94 | 1300 | 0.5674          | 0.4569 |
| 0.1859        | 45.16 | 1400 | 0.5685          | 0.4502 |
| 0.1592        | 48.39 | 1500 | 0.5684          | 0.4402 |


### Framework versions

- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0