--- license: apache-2.0 tags: - generated_from_trainer datasets: - EMBO/BLURB metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-cased-lora-finetuned-ner-EMBO-SourceData results: [] language: - en pipeline_tag: token-classification --- # bert-large-cased-lora-finetuned-ner-EMBO-SourceData This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased). It achieves the following results on the evaluation set: - Loss: 0.1282 - Precision: 0.7999 - Recall: 0.8278 - F1: 0.8136 - Accuracy: 0.9584 ## Model description For more information on how it was created, check out the following link: [https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/NER%20Project%20Using%20EMBO-SourceData%20with%20LoRA.ipynb](https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/NER%20Project%20Using%20EMBO-SourceData%20with%20LoRA.ipynb) ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: [https://huggingface.co/datasets/EMBO/BLURB](https://huggingface.co/datasets/EMBO/BLURB) **Token Distribution** ![Token Distribution](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/Images/Class%20Distribution.png) **Token Distribution After Removing 'O' Tokens** ![Token Distribution After Removing 'O' Tokens](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/Images/Class%20Distribution%20After%20Removing%20Other%20Token.png) **Histogram of Tokenized Input Lengths** ![](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Token%20Classification/Monolingual/EMBO-SourceData%20with%20LoRA/Images/Histogram%20of%20Encoded%20Token%20Input%20Lengths.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1552 | 1.0 | 3454 | 0.1499 | 0.7569 | 0.7968 | 0.7763 | 0.9516 | | 0.1179 | 2.0 | 6908 | 0.1328 | 0.7910 | 0.8120 | 0.8013 | 0.9564 | | 0.0998 | 3.0 | 10362 | 0.1282 | 0.7999 | 0.8278 | 0.8136 | 0.9584 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3