--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: codebert-base-Password_Strength_Classifier results: [] --- # codebert-base-Password_Strength_Classifier This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base). It achieves the following results on the evaluation set: - Loss: 0.0077 - Accuracy: 0.9975 - F1 - Weighted: 0.9975 - Micro: 0.9975 - Macro: 0.9963 - Recall - Weighted: 0.9975 - Micro: 0.9975 - Macro: 0.9978 - Precision - Weighted: 0.9975 - Macro: 0.9948 - Micro: 0.9975 ## Model description The model classifies passwords as one of the following: 1) Weak 2) Medium 3) Strong For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Password%20Strength%20Classification%20(MC)/CodeBERT-Base%20-%20Password_Classifier.ipynb ## Intended uses & limitations This is intended to show the possibilities. It is mainly limited by the input data. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/bhavikbb/password-strength-classifier-dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.0438 | 1.0 | 8371 | 0.0112 | 0.9956 | 0.9956 | 0.9956 | 0.9935 | 0.9956 | 0.9956 | 0.9963 | 0.9957 | 0.9956 | 0.9908 | | 0.0133 | 2.0 | 16742 | 0.0092 | 0.9966 | 0.9967 | 0.9966 | 0.9951 | 0.9966 | 0.9966 | 0.9966 | 0.9967 | 0.9966 | 0.9935 | | 0.0067 | 3.0 | 25113 | 0.0077 | 0.9975 | 0.9975 | 0.9975 | 0.9963 | 0.9975 | 0.9975 | 0.9978 | 0.9975 | 0.9975 | 0.9948 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3