FZH1996
commited on
Commit
•
fe45bc3
1
Parent(s):
cb2ad99
upload fed-lora
Browse files- loralib/__init__.py +4 -0
- loralib/layers.py +319 -0
- loralib/utils.py +49 -0
- setup.py +22 -0
loralib/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name = "lora"
|
2 |
+
|
3 |
+
from .layers import *
|
4 |
+
from .utils import *
|
loralib/layers.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
3 |
+
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
4 |
+
# ------------------------------------------------------------------------------------------
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
import math
|
10 |
+
from typing import Optional, List
|
11 |
+
|
12 |
+
class LoRALayer():
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
r: int,
|
16 |
+
lora_alpha: int,
|
17 |
+
lora_dropout: float,
|
18 |
+
merge_weights: bool,
|
19 |
+
):
|
20 |
+
self.r = r
|
21 |
+
self.lora_alpha = lora_alpha
|
22 |
+
# Optional dropout
|
23 |
+
if lora_dropout > 0.:
|
24 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
25 |
+
else:
|
26 |
+
self.lora_dropout = lambda x: x
|
27 |
+
# Mark the weight as unmerged
|
28 |
+
self.merged = False
|
29 |
+
self.merge_weights = merge_weights
|
30 |
+
|
31 |
+
|
32 |
+
class Embedding(nn.Embedding, LoRALayer):
|
33 |
+
# LoRA implemented in a dense layer
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
num_embeddings: int,
|
37 |
+
embedding_dim: int,
|
38 |
+
r: int = 0,
|
39 |
+
lora_alpha: int = 1,
|
40 |
+
merge_weights: bool = True,
|
41 |
+
**kwargs
|
42 |
+
):
|
43 |
+
nn.Embedding.__init__(self, num_embeddings, embedding_dim, **kwargs)
|
44 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=0,
|
45 |
+
merge_weights=merge_weights)
|
46 |
+
# Actual trainable parameters
|
47 |
+
if r > 0:
|
48 |
+
self.lora_A = nn.Parameter(self.weight.new_zeros((r, num_embeddings)))
|
49 |
+
self.lora_B = nn.Parameter(self.weight.new_zeros((embedding_dim, r)))
|
50 |
+
self.scaling = self.lora_alpha / self.r
|
51 |
+
# Freezing the pre-trained weight matrix
|
52 |
+
self.weight.requires_grad = False
|
53 |
+
self.reset_parameters()
|
54 |
+
|
55 |
+
def reset_parameters(self):
|
56 |
+
nn.Embedding.reset_parameters(self)
|
57 |
+
if hasattr(self, 'lora_A'):
|
58 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
59 |
+
nn.init.zeros_(self.lora_A)
|
60 |
+
nn.init.normal_(self.lora_B)
|
61 |
+
|
62 |
+
def train(self, mode: bool = True):
|
63 |
+
nn.Embedding.train(self, mode)
|
64 |
+
if mode:
|
65 |
+
if self.merge_weights and self.merged:
|
66 |
+
# Make sure that the weights are not merged
|
67 |
+
if self.r > 0:
|
68 |
+
self.weight.data -= (self.lora_B @ self.lora_A).transpose(0, 1) * self.scaling
|
69 |
+
self.merged = False
|
70 |
+
else:
|
71 |
+
if self.merge_weights and not self.merged:
|
72 |
+
# Merge the weights and mark it
|
73 |
+
if self.r > 0:
|
74 |
+
self.weight.data += (self.lora_B @ self.lora_A).transpose(0, 1) * self.scaling
|
75 |
+
self.merged = True
|
76 |
+
|
77 |
+
def forward(self, x: torch.Tensor):
|
78 |
+
if self.r > 0 and not self.merged:
|
79 |
+
result = nn.Embedding.forward(self, x)
|
80 |
+
if self.r > 0:
|
81 |
+
after_A = F.embedding(
|
82 |
+
x, self.lora_A.transpose(0, 1), self.padding_idx, self.max_norm,
|
83 |
+
self.norm_type, self.scale_grad_by_freq, self.sparse
|
84 |
+
)
|
85 |
+
result += (after_A @ self.lora_B.transpose(0, 1)) * self.scaling
|
86 |
+
return result
|
87 |
+
else:
|
88 |
+
return nn.Embedding.forward(self, x)
|
89 |
+
|
90 |
+
|
91 |
+
class Linear(nn.Linear, LoRALayer):
|
92 |
+
# LoRA implemented in a dense layer
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
in_features: int,
|
96 |
+
out_features: int,
|
97 |
+
r: int = 0,
|
98 |
+
lora_alpha: int = 1,
|
99 |
+
lora_dropout: float = 0.,
|
100 |
+
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
|
101 |
+
merge_weights: bool = True,
|
102 |
+
**kwargs
|
103 |
+
):
|
104 |
+
nn.Linear.__init__(self, in_features, out_features, **kwargs)
|
105 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
|
106 |
+
merge_weights=merge_weights)
|
107 |
+
|
108 |
+
self.fan_in_fan_out = fan_in_fan_out
|
109 |
+
# Actual trainable parameters
|
110 |
+
if r > 0:
|
111 |
+
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
|
112 |
+
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
|
113 |
+
self.scaling = self.lora_alpha / self.r
|
114 |
+
# Freezing the pre-trained weight matrix
|
115 |
+
self.weight.requires_grad = False
|
116 |
+
self.reset_parameters()
|
117 |
+
if fan_in_fan_out:
|
118 |
+
self.weight.data = self.weight.data.transpose(0, 1)
|
119 |
+
|
120 |
+
def reset_parameters(self):
|
121 |
+
nn.Linear.reset_parameters(self)
|
122 |
+
if hasattr(self, 'lora_A'):
|
123 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
124 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
125 |
+
nn.init.zeros_(self.lora_B)
|
126 |
+
|
127 |
+
def train(self, mode: bool = True):
|
128 |
+
def T(w):
|
129 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
130 |
+
nn.Linear.train(self, mode)
|
131 |
+
if mode:
|
132 |
+
if self.merge_weights and self.merged:
|
133 |
+
# Make sure that the weights are not merged
|
134 |
+
if self.r > 0:
|
135 |
+
self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
|
136 |
+
self.merged = False
|
137 |
+
else:
|
138 |
+
if self.merge_weights and not self.merged:
|
139 |
+
# Merge the weights and mark it
|
140 |
+
if self.r > 0:
|
141 |
+
self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
|
142 |
+
self.merged = True
|
143 |
+
|
144 |
+
def forward(self, x: torch.Tensor):
|
145 |
+
def T(w):
|
146 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
147 |
+
if self.r > 0 and not self.merged:
|
148 |
+
result = F.linear(x, T(self.weight), bias=self.bias)
|
149 |
+
if self.r > 0:
|
150 |
+
result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
|
151 |
+
return result
|
152 |
+
else:
|
153 |
+
return F.linear(x, T(self.weight), bias=self.bias)
|
154 |
+
|
155 |
+
|
156 |
+
class MergedLinear(nn.Linear, LoRALayer):
|
157 |
+
# LoRA implemented in a dense layer
|
158 |
+
def __init__(
|
159 |
+
self,
|
160 |
+
in_features: int,
|
161 |
+
out_features: int,
|
162 |
+
r: int = 0,
|
163 |
+
lora_alpha: int = 1,
|
164 |
+
lora_dropout: float = 0.,
|
165 |
+
enable_lora: List[bool] = [False],
|
166 |
+
fan_in_fan_out: bool = False,
|
167 |
+
merge_weights: bool = True,
|
168 |
+
**kwargs
|
169 |
+
):
|
170 |
+
nn.Linear.__init__(self, in_features, out_features, **kwargs)
|
171 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
|
172 |
+
merge_weights=merge_weights)
|
173 |
+
assert out_features % len(enable_lora) == 0, \
|
174 |
+
'The length of enable_lora must divide out_features'
|
175 |
+
self.enable_lora = enable_lora
|
176 |
+
self.fan_in_fan_out = fan_in_fan_out
|
177 |
+
# Actual trainable parameters
|
178 |
+
if r > 0 and any(enable_lora):
|
179 |
+
self.lora_A = nn.Parameter(
|
180 |
+
self.weight.new_zeros((r * sum(enable_lora), in_features)))
|
181 |
+
self.lora_B = nn.Parameter(
|
182 |
+
self.weight.new_zeros((out_features // len(enable_lora) * sum(enable_lora), r))
|
183 |
+
) # weights for Conv1D with groups=sum(enable_lora)
|
184 |
+
self.scaling = self.lora_alpha / self.r
|
185 |
+
# Freezing the pre-trained weight matrix
|
186 |
+
self.weight.requires_grad = False
|
187 |
+
# Compute the indices
|
188 |
+
self.lora_ind = self.weight.new_zeros(
|
189 |
+
(out_features, ), dtype=torch.bool
|
190 |
+
).view(len(enable_lora), -1)
|
191 |
+
self.lora_ind[enable_lora, :] = True
|
192 |
+
self.lora_ind = self.lora_ind.view(-1)
|
193 |
+
self.reset_parameters()
|
194 |
+
if fan_in_fan_out:
|
195 |
+
self.weight.data = self.weight.data.transpose(0, 1)
|
196 |
+
|
197 |
+
def reset_parameters(self):
|
198 |
+
nn.Linear.reset_parameters(self)
|
199 |
+
if hasattr(self, 'lora_A'):
|
200 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
201 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
202 |
+
nn.init.zeros_(self.lora_B)
|
203 |
+
|
204 |
+
def zero_pad(self, x):
|
205 |
+
result = x.new_zeros((*x.shape[:-1], self.out_features))
|
206 |
+
result = result.view(-1, self.out_features)
|
207 |
+
result[:, self.lora_ind] = x.reshape(
|
208 |
+
-1, self.out_features // len(self.enable_lora) * sum(self.enable_lora)
|
209 |
+
)
|
210 |
+
return result.view((*x.shape[:-1], self.out_features))
|
211 |
+
|
212 |
+
def train(self, mode: bool = True):
|
213 |
+
def T(w):
|
214 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
215 |
+
nn.Linear.train(self, mode)
|
216 |
+
print(f"lora.train, scaling = {self.scaling}, mode = {mode}, merge_weights = {self.merge_weights}, merged = {self.merged}")
|
217 |
+
if mode:
|
218 |
+
if self.merge_weights and self.merged:
|
219 |
+
# Make sure that the weights are not merged
|
220 |
+
if self.r > 0 and any(self.enable_lora):
|
221 |
+
delta_w = F.conv1d(
|
222 |
+
self.lora_A.data.unsqueeze(0),
|
223 |
+
self.lora_B.data.unsqueeze(-1),
|
224 |
+
groups=sum(self.enable_lora)
|
225 |
+
).squeeze(0)
|
226 |
+
self.weight.data -= self.zero_pad(T(delta_w * self.scaling))
|
227 |
+
self.merged = False
|
228 |
+
else:
|
229 |
+
if self.merge_weights and not self.merged:
|
230 |
+
# Merge the weights and mark it
|
231 |
+
if self.r > 0 and any(self.enable_lora):
|
232 |
+
delta_w = F.conv1d(
|
233 |
+
self.lora_A.data.unsqueeze(0),
|
234 |
+
self.lora_B.data.unsqueeze(-1),
|
235 |
+
groups=sum(self.enable_lora)
|
236 |
+
).squeeze(0)
|
237 |
+
self.weight.data += self.zero_pad(T(delta_w * self.scaling))
|
238 |
+
self.merged = True
|
239 |
+
|
240 |
+
def forward(self, x: torch.Tensor):
|
241 |
+
def T(w):
|
242 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
243 |
+
if self.merged:
|
244 |
+
return F.linear(x, T(self.weight), bias=self.bias)
|
245 |
+
else:
|
246 |
+
result = F.linear(x, T(self.weight), bias=self.bias)
|
247 |
+
if self.r > 0:
|
248 |
+
after_A = F.linear(self.lora_dropout(x), self.lora_A)
|
249 |
+
after_B = F.conv1d(
|
250 |
+
after_A.transpose(-2, -1),
|
251 |
+
self.lora_B.unsqueeze(-1),
|
252 |
+
groups=sum(self.enable_lora)
|
253 |
+
).transpose(-2, -1)
|
254 |
+
result += self.zero_pad(after_B) * self.scaling
|
255 |
+
return result
|
256 |
+
|
257 |
+
|
258 |
+
class ConvLoRA(nn.Module, LoRALayer):
|
259 |
+
def __init__(self, conv_module, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
|
260 |
+
super(ConvLoRA, self).__init__()
|
261 |
+
self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
|
262 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
|
263 |
+
assert isinstance(kernel_size, int)
|
264 |
+
# Actual trainable parameters
|
265 |
+
if r > 0:
|
266 |
+
self.lora_A = nn.Parameter(
|
267 |
+
self.conv.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
|
268 |
+
)
|
269 |
+
self.lora_B = nn.Parameter(
|
270 |
+
self.conv.weight.new_zeros((out_channels//self.conv.groups*kernel_size, r*kernel_size))
|
271 |
+
)
|
272 |
+
self.scaling = self.lora_alpha / self.r
|
273 |
+
# Freezing the pre-trained weight matrix
|
274 |
+
self.conv.weight.requires_grad = False
|
275 |
+
self.reset_parameters()
|
276 |
+
self.merged = False
|
277 |
+
|
278 |
+
def reset_parameters(self):
|
279 |
+
self.conv.reset_parameters()
|
280 |
+
if hasattr(self, 'lora_A'):
|
281 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
282 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
283 |
+
nn.init.zeros_(self.lora_B)
|
284 |
+
|
285 |
+
def train(self, mode=True):
|
286 |
+
super(ConvLoRA, self).train(mode)
|
287 |
+
if mode:
|
288 |
+
if self.merge_weights and self.merged:
|
289 |
+
# Make sure that the weights are not merged
|
290 |
+
self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
|
291 |
+
self.merged = False
|
292 |
+
else:
|
293 |
+
if self.merge_weights and not self.merged:
|
294 |
+
# Merge the weights and mark it
|
295 |
+
self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
|
296 |
+
self.merged = True
|
297 |
+
|
298 |
+
def forward(self, x):
|
299 |
+
if self.r > 0 and not self.merged:
|
300 |
+
return self.conv._conv_forward(
|
301 |
+
x,
|
302 |
+
self.conv.weight + (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling,
|
303 |
+
self.conv.bias
|
304 |
+
)
|
305 |
+
return self.conv(x)
|
306 |
+
|
307 |
+
class Conv2d(ConvLoRA):
|
308 |
+
def __init__(self, *args, **kwargs):
|
309 |
+
super(Conv2d, self).__init__(nn.Conv2d, *args, **kwargs)
|
310 |
+
|
311 |
+
class Conv1d(ConvLoRA):
|
312 |
+
def __init__(self, *args, **kwargs):
|
313 |
+
super(Conv1d, self).__init__(nn.Conv1d, *args, **kwargs)
|
314 |
+
|
315 |
+
# Can Extend to other ones like this
|
316 |
+
|
317 |
+
class Conv3d(ConvLoRA):
|
318 |
+
def __init__(self, *args, **kwargs):
|
319 |
+
super(Conv3d, self).__init__(nn.Conv3d, *args, **kwargs)
|
loralib/utils.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
3 |
+
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
4 |
+
# ------------------------------------------------------------------------------------------
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from typing import Dict
|
9 |
+
|
10 |
+
from .layers import LoRALayer
|
11 |
+
|
12 |
+
|
13 |
+
def mark_only_lora_as_trainable(model: nn.Module, bias: str = 'none') -> None:
|
14 |
+
for n, p in model.named_parameters():
|
15 |
+
if 'lora_' not in n:
|
16 |
+
p.requires_grad = False
|
17 |
+
if bias == 'none':
|
18 |
+
return
|
19 |
+
elif bias == 'all':
|
20 |
+
for n, p in model.named_parameters():
|
21 |
+
if 'bias' in n:
|
22 |
+
p.requires_grad = True
|
23 |
+
elif bias == 'lora_only':
|
24 |
+
for m in model.modules():
|
25 |
+
if isinstance(m, LoRALayer) and \
|
26 |
+
hasattr(m, 'bias') and \
|
27 |
+
m.bias is not None:
|
28 |
+
m.bias.requires_grad = True
|
29 |
+
else:
|
30 |
+
raise NotImplementedError
|
31 |
+
|
32 |
+
|
33 |
+
def lora_state_dict(model: nn.Module, bias: str = 'none') -> Dict[str, torch.Tensor]:
|
34 |
+
my_state_dict = model.state_dict()
|
35 |
+
if bias == 'none':
|
36 |
+
return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k}
|
37 |
+
elif bias == 'all':
|
38 |
+
return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k or 'bias' in k}
|
39 |
+
elif bias == 'lora_only':
|
40 |
+
to_return = {}
|
41 |
+
for k in my_state_dict:
|
42 |
+
if 'lora_' in k:
|
43 |
+
to_return[k] = my_state_dict[k]
|
44 |
+
bias_name = k.split('lora_')[0]+'bias'
|
45 |
+
if bias_name in my_state_dict:
|
46 |
+
to_return[bias_name] = my_state_dict[bias_name]
|
47 |
+
return to_return
|
48 |
+
else:
|
49 |
+
raise NotImplementedError
|
setup.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import setuptools
|
2 |
+
|
3 |
+
with open("README.md", "r", encoding="utf-8") as fh:
|
4 |
+
long_description = fh.read()
|
5 |
+
|
6 |
+
setuptools.setup(
|
7 |
+
name="loralib",
|
8 |
+
version="0.1.0",
|
9 |
+
author="Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen",
|
10 |
+
author_email="[email protected]",
|
11 |
+
description="PyTorch implementation of low-rank adaptation (LoRA), a parameter-efficient approach to adapt a large pre-trained deep learning model which obtains performance on-par with full fine-tuning.",
|
12 |
+
long_description=long_description,
|
13 |
+
long_description_content_type="text/markdown",
|
14 |
+
url="https://github.com/microsoft/LoRA",
|
15 |
+
packages=setuptools.find_packages(),
|
16 |
+
classifiers=[
|
17 |
+
"Programming Language :: Python :: 3",
|
18 |
+
"License :: OSI Approved :: MIT License",
|
19 |
+
"Operating System :: OS Independent",
|
20 |
+
],
|
21 |
+
python_requires='>=3.6',
|
22 |
+
)
|