Fantast commited on
Commit
635d914
1 Parent(s): 93182b8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md CHANGED
@@ -1,3 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
 
1
+ ### YOLOS (small-sized) model Finetuned For Seal Detection Task
2
+
3
+ #### YOLOS model based on `hustvl/yolos-small` and fine-tuned on Our Seal Image Dataset.
4
+
5
+ #### Model description
6
+ YOLOS is a Vision Transformer (ViT) trained using the DETR loss.
7
+
8
+ #### How to use
9
+ Here is how to use this model:
10
+ ```
11
+ from transformers import YolosFeatureExtractor, YolosForObjectDetection
12
+ from PIL import Image
13
+ import requests
14
+
15
+ image = Image.open("xxxxxxxxxxxxx")
16
+
17
+ feature_extractor = YolosFeatureExtractor.from_pretrained('fantast/yolos-small-finetuned-for-seal')
18
+ model = YolosForObjectDetection.from_pretrained('fantast/yolos-small-finetuned-for-seal')
19
+
20
+ inputs = feature_extractor(images=image, return_tensors="pt")
21
+ outputs = model(**inputs)
22
+ ```
23
+
24
+ # model predicts bounding boxes
25
+ ```
26
+ logits = outputs.logits
27
+ bboxes = outputs.pred_boxes
28
+ ```
29
+ Currently, both the feature extractor and model support PyTorch.
30
+
31
+ #### Training data
32
+ The YOLOS model based on `hustvl/yolos-small` and fine-tuned on Our Own Seal Image Dataset, a dataset consisting of 118k/5k annotated images for training/validation respectively.
33
+
34
+
35
+ BibTeX entry and citation info
36
+ ```
37
+ @article{DBLP:journals/corr/abs-2106-00666,
38
+ author = {Yuxin Fang and
39
+ Bencheng Liao and
40
+ Xinggang Wang and
41
+ Jiemin Fang and
42
+ Jiyang Qi and
43
+ Rui Wu and
44
+ Jianwei Niu and
45
+ Wenyu Liu},
46
+ title = {You Only Look at One Sequence: Rethinking Transformer in Vision through
47
+ Object Detection},
48
+ journal = {CoRR},
49
+ volume = {abs/2106.00666},
50
+ year = {2021},
51
+ url = {https://arxiv.org/abs/2106.00666},
52
+ eprinttype = {arXiv},
53
+ eprint = {2106.00666},
54
+ timestamp = {Fri, 29 Apr 2022 19:49:16 +0200},
55
+ biburl = {https://dblp.org/rec/journals/corr/abs-2106-00666.bib},
56
+ bibsource = {dblp computer science bibliography, https://dblp.org}
57
+ }
58
+ ```
59
+
60
+
61
  ---
62
  license: mit
63
  ---