FrancescoBonzi commited on
Commit
bb348fb
1 Parent(s): fc2bedf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - voxpopuli
7
+ model-index:
8
+ - name: speecht5_finetuned_voxpopuli_it
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # speecht5_finetuned_voxpopuli_it
16
+
17
+ This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4871
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 2
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 8
43
+ - total_train_batch_size: 32
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 500
47
+ - training_steps: 4000
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 0.5505 | 6.13 | 1000 | 0.5092 |
54
+ | 0.5245 | 12.26 | 2000 | 0.4941 |
55
+ | 0.5192 | 18.39 | 3000 | 0.4885 |
56
+ | 0.5126 | 24.52 | 4000 | 0.4871 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.30.2
62
+ - Pytorch 2.0.0
63
+ - Datasets 2.13.1
64
+ - Tokenizers 0.13.3