File size: 1,612 Bytes
cfac538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: mit
datasets:
- wikipedia
language:
- en
tags:
- research
---
This model is significantly undertrained and designed for research purposes only.  
For use in transformers:
```python
from transformers import AutoTokenizer, GPT2Model

import torch.nn as nn
import torch

class RMSLayerNorm(nn.Module):
    def __init__(self, normalized_shape, eps=1e-8, affine=True):
        super(RMSLayerNorm, self).__init__()
        self.normalized_shape = normalized_shape
        self.eps = eps
        self.affine = affine

        if self.affine:
            self.weight = nn.Parameter(torch.ones(()))
        else:
            self.register_parameter('weight', None)
            self.register_parameter('bias', None)

    def forward(self, x):
        rms = torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps)
        x_normalized = x / rms
        if self.affine:
            x_normalized = x_normalized * self.weight
        return x_normalized


def replace(model):
    for name, child in model.named_children():
        if isinstance(child, nn.modules.normalization.LayerNorm):
            setattr(model, name, RMSLayerNorm(child.normalized_shape, eps=child.eps, affine=True))
        else:
            replace(child)
    return model


class GPTR2Model(GPT2Model):
    def __init__(self, config):
        super().__init__(config)
        replace(self)

model = GPTR2Model.from_pretrained("George-Ogden/gptr2-nano-without-momentum-without-weight-decay")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
```
For more details and example usage, see https://github.com/George-Ogden/residual-streams