Robotics
File size: 2,873 Bytes
9650bca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 26 16:31:20 2019

@author: ELİF NUR
"""
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn import preprocessing

def loadData(fromPath,LabelColumnName,labelCount):#This method to read the csv file and change the label feature 
  
  data_=pd.read_csv(fromPath) 
  if labelCount==2:
    dataset=data_
    dataset[LabelColumnName]=dataset[LabelColumnName].apply({'DoS':'Anormal','BENIGN':'Normal' ,'DDoS':'Anormal', 'PortScan':'Anormal'}.get)  
  else:
    dataset=data_
  data=dataset[LabelColumnName].value_counts()
  data.plot(kind='pie')
  featureList= dataset.drop([LabelColumnName],axis=1).columns
  return dataset,featureList

def datasetSplit(df,LabelColumnName):#This method is to separate the dataset as X and y.
    labelencoder = LabelEncoder()
    df.iloc[:, -1] = labelencoder.fit_transform(df.iloc[:, -1])
    X = df.drop([LabelColumnName],axis=1)
    X = np.array(X)
    X = X.T
    for column in  X:  #Control of values in X
        median = np.nanmedian(column)
        column[np.isnan(column)] = median
        column[column == np.inf] = 0
        column[column == -np.inf] = 0
    X = X.T
    scaler = preprocessing.MinMaxScaler()
    X= scaler.fit_transform(X) 
    y=df[[LabelColumnName]]
    return X,y

def train_test_dataset(df): #This method is to separate the dataset as X_train,X_test,y_train and y_test.
    labelencoder = LabelEncoder()
    df.iloc[:, -1] = labelencoder.fit_transform(df.iloc[:, -1])
    X = df.drop([LabelColumnName],axis=1)
    y=df[[LabelColumnName]]
    X_train, X_test, y_train, y_test = train_test_split(X,y, train_size = 0.7, test_size = 0.3, random_state = 0, stratify = y)
    X_train = np.array(X_train)
    X_train = X_train.T
    for column in  X_train:
        median = np.nanmedian(column)
        column[np.isnan(column)] = median
        column[column == np.inf] = 0
        column[column == -np.inf] = 0
    X_train = X_train.T
    y_train = np.array(y_train)
    y_train = y_train.T
    for column in  y_train:
        median = np.nanmedian(column)
        column[np.isnan(column)] = median
        column[column == np.inf] = 0
        column[column == -np.inf] = 0
    y_train =  y_train.T 
    X_test = np.array(X_test)
    X_test = X_test.T
    for column in  X_test:
        median = np.nanmedian(column)
        column[np.isnan(column)] = median
        column[column == np.inf] = 0
        column[column == -np.inf] = 0
    X_test = X_test.T
    y_test = np.array(y_test)
    y_test = y_test.T
    for column in  y_test: 
        median = np.nanmedian(column)
        column[np.isnan(column)] = median
        column[column == np.inf] = 0
        column[column == -np.inf] = 0
    y_test =  y_test.T
    
    
    return  X_train, X_test, y_train, y_test