File size: 6,399 Bytes
3aaba32
 
 
 
 
 
 
 
 
 
 
025a422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aaba32
 
 
 
 
 
 
 
470c09b
 
 
 
a343915
 
 
 
 
 
 
3aaba32
 
 
 
 
 
ccb1bac
3aaba32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
025a422
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
license: llama3
library_name: transformers
tags:
- nsfw
- not-for-all-audiences
- llama-3
- text-generation-inference
- moe
- mergekit
- merge
model-index:
- name: Llama-Salad-4x8B-V3
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 66.54
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 31.93
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 8.53
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.05
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.45
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 27.98
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HiroseKoichi/Llama-Salad-4x8B-V3
      name: Open LLM Leaderboard
---

# Llama-Salad-4x8B-V3
Changes in V3:
- Uses `L3-8B-Stheno-v3.2` as the base model instead of `Meta-Llama-3-8B-Instruct`
- Removed `opus-v1.2-llama-3-8b-instruct-run3.5-epoch2.5` and added `Einstein-v6.1-Llama3-8B`
- Swapped `Llama-3-Soliloquy-8B-v2` for `L3-8B-Stheno-v3.2`

I was clearly wrong when I said V2 would be difficult to improve on, because V3 is significantly better in just about every aspect. Stheno-v3.2 fixed all of the issues present in Stheno-v3.1, making it my favorite roleplay model and the best base model for llama-3 MoE merges.

The one thing I do want to improve on is finding a better conversational model than Meta-Llama-3-8B-Instruct; it's good for that use case, but I'm sure there's a better one out there. I tried using llama-3-cat-8b-instruct-v1, but it absolutely tanked the model's situational awareness and kept making blatantly contradictory statements.

# Quantization Formats
**GGUF**
- Static:
    - https://huggingface.co/mradermacher/Llama-Salad-4x8B-V3-GGUF
- Imatrix:
    - https://huggingface.co/mradermacher/Llama-Salad-4x8B-V3-i1-GGUF

# Details
- **License**: [llama3](https://llama.meta.com/llama3/license/)
- **Instruct Format**: [llama-3](https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/)
- **Context Size**: 8K

## Models Used
- [L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2)
- [Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct)
- [Llama-3-8B-Synthia-v3.5](https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5)
- [Einstein-v6.1-Llama3-8B](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B)

## Merge Config
```yaml
base_model: Sao10K/L3-8B-Stheno-v3.2
gate_mode: hidden
dtype: bfloat16
experts_per_token: 2
experts:
  - source_model: NousResearch/Meta-Llama-3-8B-Instruct
    positive_prompts:
    - "chat"
    - "conversation"
  - source_model: Weyaxi/Einstein-v6.1-Llama3-8B
    positive_prompts:
    - "science"
    - "physics"
    - "chemistry"
    - "biology"
    - "math"
    - "step-by-step"
    - "logical reasoning"
    - "multilingual"
    - "translation"
    - "language translation"
    - "foreign language"
    negative_prompts:
    - "programming language"
  - source_model: migtissera/Llama-3-8B-Synthia-v3.5
    positive_prompts:
    - "summarize"
    - "paraphrase"
    - "list"
    - "explain"
    - "define"
    - "analyze"
    - "rephrase"
    - "elaborate"
    - "programming language"
    - "JavaScript"
    - "Python programming language"
    - "Rust programming language"
    - "C++ programming language"
    - "GO programming language"
    - "Ruby programming language"
    - "Haskell programming language"
    - "SQL query language"
    - "CSS markup styling language"
    - "code"
  - source_model: Sao10K/L3-8B-Stheno-v3.2
    positive_prompts:
    - "characters"
    - "scene"
    - "roleplay"
    - "erotic roleplay"
    - "sexual fetish"
    - "NSFW"
    - "creative writing"
    - "storytelling"
    - "narration"
    - "narrative setting"
    - "narrative plot"
    - "narrative exposition"
    - "narrative theme"
    - "narrative climax"
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_HiroseKoichi__Llama-Salad-4x8B-V3)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |24.75|
|IFEval (0-Shot)    |66.54|
|BBH (3-Shot)       |31.93|
|MATH Lvl 5 (4-Shot)| 8.53|
|GPQA (0-shot)      | 7.05|
|MuSR (0-shot)      | 6.45|
|MMLU-PRO (5-shot)  |27.98|