IProject-10 commited on
Commit
c4ba527
1 Parent(s): 5612b84

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -5
README.md CHANGED
@@ -9,6 +9,11 @@ model-index:
9
  - name: bert-base-uncased-finetuned-squad2
10
  results: []
11
  pipeline_tag: question-answering
 
 
 
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -22,17 +27,34 @@ It achieves the following results on the evaluation set:
22
 
23
  ## Model description
24
 
25
- More information needed
 
 
 
 
 
26
 
27
  ## Intended uses & limitations
28
 
29
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
- ## Training and evaluation data
32
 
33
- More information needed
34
 
35
- ## Training procedure
36
 
37
  ### Training hyperparameters
38
 
 
9
  - name: bert-base-uncased-finetuned-squad2
10
  results: []
11
  pipeline_tag: question-answering
12
+ metrics:
13
+ - exact_match
14
+ - f1
15
+ language:
16
+ - en
17
  ---
18
 
19
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
27
 
28
  ## Model description
29
 
30
+ BERTbase fine-tuned on SQuAD 2.0 : Encoder-based Transformer Language model, pretrained with Masked Language Modeling and Next Sentence Prediction.
31
+ Suitable for Question-Answering tasks, predicts answer spans within the context provided.
32
+
33
+ Training data: Train-set SQuAD2.0
34
+ Evaluation data: Validation-set SQuAD2.0
35
+ Hardware Accelerator used: GPU Tesla T4
36
 
37
  ## Intended uses & limitations
38
 
39
+ For Question-Answering -
40
+
41
+ question = "How many programming languages does BLOOM support?"
42
+ context = "BLOOM has 176 billion parameters and can generate text in 46 languages natural languages and 13 programming languages."
43
+
44
+ from transformers import pipeline
45
+
46
+ question_answerer = pipeline("question-answering", model="IProject-10/bert-base-uncased-finetuned-squad2")
47
+ question_answerer(question=question, context=context)
48
+
49
+ {{ direct_use | default("[question-answering]", true)}}
50
+ {{ downstream_use | default("[question-answering]", true)}}
51
+
52
+ ## Results
53
+
54
+ Evaluation on SQuAD 2.0 validation dataset:
55
 
 
56
 
 
57
 
 
58
 
59
  ### Training hyperparameters
60