IProject-10 commited on
Commit
b317e51
1 Parent(s): 654be17

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -16
README.md CHANGED
@@ -8,30 +8,71 @@ datasets:
8
  model-index:
9
  - name: distilbert-base-uncased-finetuned-squad2
10
  results: []
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # distilbert-base-uncased-finetuned-squad2
17
-
18
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset.
19
- It achieves the following results on the evaluation set:
20
- - Loss: 1.4648
21
-
22
  ## Model description
23
 
24
- More information needed
25
-
26
- ## Intended uses & limitations
27
 
28
- More information needed
 
 
 
 
 
29
 
30
- ## Training and evaluation data
31
-
32
- More information needed
33
 
34
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ### Training hyperparameters
37
 
@@ -52,10 +93,13 @@ The following hyperparameters were used during training:
52
  | 0.8749 | 2.0 | 16470 | 1.3015 |
53
  | 0.6708 | 3.0 | 24705 | 1.4648 |
54
 
55
-
 
 
 
56
  ### Framework versions
57
 
58
  - Transformers 4.31.0
59
  - Pytorch 2.0.1+cu118
60
  - Datasets 2.14.2
61
- - Tokenizers 0.13.3
 
8
  model-index:
9
  - name: distilbert-base-uncased-finetuned-squad2
10
  results: []
11
+ language:
12
+ - en
13
+ metrics:
14
+ - exact_match
15
+ - f1
16
+ pipeline_tag: question-answering
17
  ---
18
 
19
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
  should probably proofread and complete it, then remove this comment. -->
21
 
 
 
 
 
 
 
22
  ## Model description
23
 
24
+ DistilBERT fine-tuned on SQuAD 2.0 : Encoder-based Transformer Language model. DistilBERT is a compact and efficient version of BERT (Bidirectional Encoder Representations from Transformers).<br>
25
+ It employs a distillation process that transfers knowledge from a larger pretrained model (like BERT) to a smaller one. <br>
26
+ Suitable for Question-Answering tasks, predicts answer spans within the context provided.<br>
27
 
28
+ **Language model:** distilbert-base-uncased
29
+ **Language:** English
30
+ **Downstream-task:** Question-Answering
31
+ **Training data:** Train-set SQuAD 2.0
32
+ **Evaluation data:** Evaluation-set SQuAD 2.0
33
+ **Hardware Accelerator used**: GPU Tesla T4
34
 
35
+ ## Intended uses & limitations
 
 
36
 
37
+ For Question-Answering -
38
+
39
+ ```python
40
+ !pip install transformers
41
+ from transformers import pipeline
42
+ model_checkpoint = "IProject-10/bert-base-uncased-finetuned-squad2"
43
+ question_answerer = pipeline("question-answering", model=model_checkpoint)
44
+
45
+ context = """
46
+ 🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration
47
+ between them. It's straightforward to train your models with one before loading them for inference with the other.
48
+ """
49
+
50
+ question = "Which deep learning libraries back 🤗 Transformers?"
51
+ question_answerer(question=question, context=context)
52
+ ```
53
+
54
+ ## Results
55
+
56
+ Evaluation on SQuAD 2.0 validation dataset:
57
+
58
+ ```
59
+ exact: 65.88056935904994,
60
+ f1: 68.9782873196397,
61
+ total': 11873,
62
+ HasAns_exact': 68.15114709851552,
63
+ HasAns_f1': 74.35546648888003,
64
+ HasAns_total': 5928,
65
+ NoAns_exact': 63.61648444070648,
66
+ NoAns_f1': 63.61648444070648,
67
+ NoAns_total': 5945,
68
+ best_exact': 65.88056935904994,
69
+ best_exact_thresh': 0.9993563294410706,
70
+ best_f1': 68.97828731963992,
71
+ best_f1_thresh': 0.9993563294410706,
72
+ total_time_in_seconds': 122.51037029999998,
73
+ samples_per_second': 96.91424465476456,
74
+ latency_in_seconds': 0.01031840059799545}
75
+ ```
76
 
77
  ### Training hyperparameters
78
 
 
93
  | 0.8749 | 2.0 | 16470 | 1.3015 |
94
  | 0.6708 | 3.0 | 24705 | 1.4648 |
95
 
96
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset.
97
+ It achieves the following results on the evaluation set:
98
+ - Loss: 1.4648
99
+
100
  ### Framework versions
101
 
102
  - Transformers 4.31.0
103
  - Pytorch 2.0.1+cu118
104
  - Datasets 2.14.2
105
+ - Tokenizers 0.13.3