infimm-vicuna13b / flamingo_lm.py
Ye27's picture
Upload folder using huggingface_hub
7b58103
import torch.nn as nn
from .helpers import GatedCrossAttentionBlock
from .utils import getattr_recursive, setattr_recursive
class FlamingoLayer(nn.Module):
"""
FlamingoLayer is a wrapper around the GatedCrossAttentionBlock and DecoderLayer.
"""
def __init__(
self, gated_cross_attn_layer, decoder_layer, gradient_checkpointing=False
):
super().__init__()
self.gated_cross_attn_layer = gated_cross_attn_layer
self.decoder_layer = decoder_layer
self.vis_x = None
self.media_locations = None
if self.gated_cross_attn_layer is not None:
self.gated_cross_attn_layer._use_gradient_checkpointing = (
gradient_checkpointing
)
self.decoder_layer._use_gradient_checkpointing = gradient_checkpointing
def is_conditioned(self) -> bool:
"""Check whether the layer is conditioned."""
return self.vis_x is not None and self.media_locations is not None
# Used this great idea from this implementation of Flamingo (https://github.com/dhansmair/flamingo-mini/)
def condition_vis_x(self, vis_x):
self.vis_x = vis_x
def condition_media_locations(self, media_locations):
self.media_locations = media_locations
def condition_use_cached_media(self, use_cached_media):
self.use_cached_media = use_cached_media
def forward(
self,
lang_x,
attention_mask=None,
**decoder_layer_kwargs,
):
# Cross attention
if self.gated_cross_attn_layer is not None:
if self.vis_x is None:
raise ValueError("vis_x must be conditioned before forward pass")
if self.media_locations is None:
raise ValueError(
"media_locations must be conditioned before forward pass"
)
lang_x = self.gated_cross_attn_layer(
lang_x,
self.vis_x,
media_locations=self.media_locations,
use_cached_media=self.use_cached_media,
)
# Normal decoder layer
lang_x = self.decoder_layer(
lang_x, attention_mask=attention_mask, **decoder_layer_kwargs
)
return lang_x
class FlamingoLMMixin(nn.Module):
"""
Mixin to add cross-attention layers to a language model.
"""
def set_decoder_layers_attr_name(self, decoder_layers_attr_name):
self.decoder_layers_attr_name = decoder_layers_attr_name
def _get_decoder_layers(self):
return getattr_recursive(self, self.decoder_layers_attr_name)
def _set_decoder_layers(self, value):
setattr_recursive(self, self.decoder_layers_attr_name, value)
def init_flamingo(
self,
media_token_id,
lang_hidden_size,
vis_hidden_size,
cross_attn_every_n_layers,
*,
enable_init_network_params=False,
initializer_range=0.02,
gradient_checkpointing=False,
):
"""
Initialize Flamingo by adding a new gated cross attn to the decoder. Store the media token id for computing the media locations.
"""
self.old_decoder_blocks = self._get_decoder_layers()
self.gated_cross_attn_layers = nn.ModuleList(
[
(
GatedCrossAttentionBlock(
dim=lang_hidden_size,
dim_visual=vis_hidden_size,
ff_mult=4,
enable_init_network_params=enable_init_network_params,
initializer_range=initializer_range,
gradient_checkpointing=gradient_checkpointing,
)
if (layer_idx + 1) % cross_attn_every_n_layers == 0
else None
)
for layer_idx, _ in enumerate(self._get_decoder_layers())
]
)
self.init_flamingo_layers(gradient_checkpointing)
self.media_token_id = media_token_id
self.initialized_flamingo = True
self._use_cached_vision_x = False
def init_flamingo_layers(self, gradient_checkpointing):
"""
Re initializes the FlamingoLayers.
Propagates any changes made to self.gated_corss_attn_layers or self.old_decoder_blocks
"""
self._set_decoder_layers(
nn.ModuleList(
[
FlamingoLayer(
gated_cross_attn_layer, decoder_layer, gradient_checkpointing
)
for gated_cross_attn_layer, decoder_layer in zip(
self.gated_cross_attn_layers, self.old_decoder_blocks
)
]
)
)
def forward(self, input_ids, attention_mask, **kwargs):
"""Condition the Flamingo layers on the media locations before forward()"""
if not self.initialized_flamingo:
raise ValueError(
"Flamingo layers are not initialized. Please call `init_flamingo`"
" first."
)
media_locations = input_ids == self.media_token_id
# if there are media already cached and we're generating and there are no media tokens in the input,
# we'll assume that ALL input tokens should attend to the last previous media that is cached.
# this is especially important for HF generate() compatibility, since generate() calls forward()
# repeatedly one token at a time (with no media tokens).
# without this check, the model would not attend to any images when generating (after the first token)
use_cached_media_locations = (
self._use_cached_vision_x
and self.is_conditioned()
and not media_locations.any()
)
for layer in self._get_decoder_layers():
if not use_cached_media_locations:
layer.condition_media_locations(media_locations)
layer.condition_use_cached_media(use_cached_media_locations)
# package arguments for the other parent's forward. since we don't know the order of the arguments,
# make them all kwargs
kwargs["input_ids"] = input_ids
kwargs["attention_mask"] = attention_mask
return super().forward(**kwargs) # Call the other parent's forward method
def is_conditioned(self) -> bool:
"""Check whether all decoder layers are already conditioned."""
return all(l.is_conditioned() for l in self._get_decoder_layers())
def clear_conditioned_layers(self):
for layer in self._get_decoder_layers():
layer.condition_vis_x(None)
layer.condition_media_locations(None)
layer.condition_use_cached_media(None)