--- license: apache-2.0 tags: - moe - merge - mergekit - lazymergekit - Qwen/Qwen1.5-0.5B --- # TinyQwex-4x620M-MoE TinyQwex-4x620M-MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) * [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) * [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) * [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) ## 🧩 Configuration ```yamlbase_model: Qwen/Qwen1.5-0.5B experts: - source_model: Qwen/Qwen1.5-0.5B positive_prompts: - "reasoning" - "logic" - "problem-solving" - "critical thinking" - "analysis" - "synthesis" - "evaluation" - "decision-making" - "judgment" - "insight" - source_model: Qwen/Qwen1.5-0.5B positive_prompts: - "program" - "software" - "develop" - "build" - "create" - "design" - "implement" - "debug" - "test" - "code" - "python" - "programming" - "algorithm" - "function" - source_model: Qwen/Qwen1.5-0.5B positive_prompts: - "storytelling" - "narrative" - "fiction" - "creative writing" - "plot" - "characters" - "dialogue" - "setting" - "emotion" - "imagination" - "scene" - "story" - "character" - source_model: Qwen/Qwen1.5-0.5B positive_prompts: - "chat" - "conversation" - "dialogue" - "discuss" - "ask questions" - "share thoughts" - "explore ideas" - "learn new things" - "personal assistant" - "friendly helper" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Isotonic/TinyQwex-4x620M-MoE" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```