J-LAB commited on
Commit
7de9499
1 Parent(s): 3100159

Upload 3 files

Browse files
Files changed (3) hide show
  1. config.json +66 -218
  2. configuration_florence2.py +339 -0
  3. modeling_florence2.py +0 -0
config.json CHANGED
@@ -1,237 +1,85 @@
1
  {
2
- "_name_or_path": "microsoft/Florence-2-large",
3
  "architectures": [
4
  "Florence2ForConditionalGeneration"
5
  ],
6
  "auto_map": {
7
- "AutoConfig": "microsoft/Florence-2-large--configuration_florence2.Florence2Config",
8
- "AutoModelForCausalLM": "microsoft/Florence-2-large--modeling_florence2.Florence2ForConditionalGeneration"
9
  },
10
  "bos_token_id": 0,
11
  "eos_token_id": 2,
12
  "ignore_index": -100,
13
- "is_encoder_decoder": true,
14
  "model_type": "florence2",
15
  "pad_token_id": 1,
16
  "projection_dim": 1024,
17
  "text_config": {
18
- "_name_or_path": "",
19
- "activation_dropout": 0.1,
20
- "activation_function": "gelu",
21
- "add_bias_logits": false,
22
- "add_cross_attention": false,
23
- "add_final_layer_norm": false,
24
- "architectures": null,
25
- "attention_dropout": 0.1,
26
- "bad_words_ids": null,
27
- "begin_suppress_tokens": null,
28
- "bos_token_id": 0,
29
- "chunk_size_feed_forward": 0,
30
- "classif_dropout": 0.1,
31
- "classifier_dropout": 0.0,
32
- "cross_attention_hidden_size": null,
33
- "d_model": 1024,
34
- "decoder_attention_heads": 16,
35
- "decoder_ffn_dim": 4096,
36
- "decoder_layerdrop": 0.0,
37
- "decoder_layers": 12,
38
- "decoder_start_token_id": 2,
39
- "diversity_penalty": 0.0,
40
- "do_sample": false,
41
- "dropout": 0.1,
42
- "early_stopping": true,
43
- "encoder_attention_heads": 16,
44
- "encoder_ffn_dim": 4096,
45
- "encoder_layerdrop": 0.0,
46
- "encoder_layers": 12,
47
- "encoder_no_repeat_ngram_size": 0,
48
- "eos_token_id": 2,
49
- "exponential_decay_length_penalty": null,
50
- "finetuning_task": null,
51
- "forced_bos_token_id": 0,
52
- "forced_eos_token_id": 2,
53
- "gradient_checkpointing": false,
54
- "id2label": {
55
- "0": "LABEL_0",
56
- "1": "LABEL_1",
57
- "2": "LABEL_2"
58
- },
59
- "init_std": 0.02,
60
- "is_decoder": false,
61
- "is_encoder_decoder": true,
62
- "label2id": {
63
- "LABEL_0": 0,
64
- "LABEL_1": 1,
65
- "LABEL_2": 2
66
- },
67
- "length_penalty": 1.0,
68
- "max_length": 20,
69
- "max_position_embeddings": 1024,
70
- "min_length": 0,
71
- "model_type": "florence2_language",
72
- "no_repeat_ngram_size": 3,
73
- "normalize_before": false,
74
- "num_beam_groups": 1,
75
- "num_beams": 3,
76
- "num_hidden_layers": 12,
77
- "num_return_sequences": 1,
78
- "output_attentions": false,
79
- "output_hidden_states": false,
80
- "output_scores": false,
81
- "pad_token_id": 1,
82
- "prefix": null,
83
- "problem_type": null,
84
- "pruned_heads": {},
85
- "remove_invalid_values": false,
86
- "repetition_penalty": 1.0,
87
- "return_dict": true,
88
- "return_dict_in_generate": false,
89
- "scale_embedding": false,
90
- "sep_token_id": null,
91
- "suppress_tokens": null,
92
- "task_specific_params": null,
93
- "temperature": 1.0,
94
- "tf_legacy_loss": false,
95
- "tie_encoder_decoder": false,
96
- "tie_word_embeddings": true,
97
- "tokenizer_class": null,
98
- "top_k": 50,
99
- "top_p": 1.0,
100
- "torch_dtype": null,
101
- "torchscript": false,
102
- "typical_p": 1.0,
103
- "use_bfloat16": false,
104
- "use_cache": true,
105
- "vocab_size": 51289
106
  },
107
- "torch_dtype": "float32",
108
- "transformers_version": "4.42.4",
109
  "vision_config": {
110
- "_name_or_path": "",
111
- "add_cross_attention": false,
112
- "architectures": null,
113
- "bad_words_ids": null,
114
- "begin_suppress_tokens": null,
115
- "bos_token_id": null,
116
- "chunk_size_feed_forward": 0,
117
- "cross_attention_hidden_size": null,
118
- "decoder_start_token_id": null,
119
- "depths": [
120
- 1,
121
- 1,
122
- 9,
123
- 1
124
- ],
125
- "dim_embed": [
126
- 256,
127
- 512,
128
- 1024,
129
- 2048
130
- ],
131
- "diversity_penalty": 0.0,
132
- "do_sample": false,
133
- "drop_path_rate": 0.1,
134
- "early_stopping": false,
135
- "enable_checkpoint": false,
136
- "encoder_no_repeat_ngram_size": 0,
137
- "eos_token_id": null,
138
- "exponential_decay_length_penalty": null,
139
- "finetuning_task": null,
140
- "forced_bos_token_id": null,
141
- "forced_eos_token_id": null,
142
- "id2label": {
143
- "0": "LABEL_0",
144
- "1": "LABEL_1"
145
- },
146
- "image_feature_source": [
147
- "spatial_avg_pool",
148
- "temporal_avg_pool"
149
- ],
150
- "image_pos_embed": {
151
- "max_pos_embeddings": 50,
152
- "type": "learned_abs_2d"
153
- },
154
- "is_decoder": false,
155
- "is_encoder_decoder": false,
156
- "label2id": {
157
- "LABEL_0": 0,
158
- "LABEL_1": 1
159
- },
160
- "length_penalty": 1.0,
161
- "max_length": 20,
162
- "min_length": 0,
163
- "model_type": "",
164
- "no_repeat_ngram_size": 0,
165
- "num_beam_groups": 1,
166
- "num_beams": 1,
167
- "num_groups": [
168
- 8,
169
- 16,
170
- 32,
171
- 64
172
- ],
173
- "num_heads": [
174
- 8,
175
- 16,
176
- 32,
177
- 64
178
- ],
179
- "num_return_sequences": 1,
180
- "output_attentions": false,
181
- "output_hidden_states": false,
182
- "output_scores": false,
183
- "pad_token_id": null,
184
- "patch_padding": [
185
- 3,
186
- 1,
187
- 1,
188
- 1
189
- ],
190
- "patch_prenorm": [
191
- false,
192
- true,
193
- true,
194
- true
195
- ],
196
- "patch_size": [
197
- 7,
198
- 3,
199
- 3,
200
- 3
201
- ],
202
- "patch_stride": [
203
- 4,
204
- 2,
205
- 2,
206
- 2
207
- ],
208
- "prefix": null,
209
- "problem_type": null,
210
  "projection_dim": 1024,
211
- "pruned_heads": {},
212
- "remove_invalid_values": false,
213
- "repetition_penalty": 1.0,
214
- "return_dict": true,
215
- "return_dict_in_generate": false,
216
- "sep_token_id": null,
217
- "suppress_tokens": null,
218
- "task_specific_params": null,
219
- "temperature": 1.0,
220
- "tf_legacy_loss": false,
221
- "tie_encoder_decoder": false,
222
- "tie_word_embeddings": true,
223
- "tokenizer_class": null,
224
- "top_k": 50,
225
- "top_p": 1.0,
226
- "torch_dtype": null,
227
- "torchscript": false,
228
- "typical_p": 1.0,
229
- "use_bfloat16": false,
230
  "visual_temporal_embedding": {
231
- "max_temporal_embeddings": 100,
232
- "type": "COSINE"
233
  },
234
- "window_size": 12
 
 
 
 
235
  },
236
- "vocab_size": 51289
237
- }
 
 
 
 
1
  {
2
+ "_name_or_path": "florence2",
3
  "architectures": [
4
  "Florence2ForConditionalGeneration"
5
  ],
6
  "auto_map": {
7
+ "AutoConfig": "configuration_florence2.Florence2Config",
8
+ "AutoModelForCausalLM": "modeling_florence2.Florence2ForConditionalGeneration"
9
  },
10
  "bos_token_id": 0,
11
  "eos_token_id": 2,
12
  "ignore_index": -100,
 
13
  "model_type": "florence2",
14
  "pad_token_id": 1,
15
  "projection_dim": 1024,
16
  "text_config": {
17
+ "vocab_size": 51289,
18
+ "activation_dropout": 0.1,
19
+ "activation_function": "gelu",
20
+ "add_bias_logits": false,
21
+ "add_final_layer_norm": false,
22
+ "attention_dropout": 0.1,
23
+ "bos_token_id": 0,
24
+ "classif_dropout": 0.1,
25
+ "classifier_dropout": 0.0,
26
+ "d_model": 1024,
27
+ "decoder_attention_heads": 16,
28
+ "decoder_ffn_dim": 4096,
29
+ "decoder_layerdrop": 0.0,
30
+ "decoder_layers": 12,
31
+ "decoder_start_token_id": 2,
32
+ "dropout": 0.1,
33
+ "early_stopping": true,
34
+ "encoder_attention_heads": 16,
35
+ "encoder_ffn_dim": 4096,
36
+ "encoder_layerdrop": 0.0,
37
+ "encoder_layers": 12,
38
+ "eos_token_id": 2,
39
+ "forced_eos_token_id": 2,
40
+ "forced_bos_token_id": 0,
41
+ "gradient_checkpointing": false,
42
+ "init_std": 0.02,
43
+ "is_encoder_decoder": true,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1,
47
+ "LABEL_2": 2
48
+ },
49
+ "max_position_embeddings": 1024,
50
+ "no_repeat_ngram_size": 3,
51
+ "normalize_before": false,
52
+ "num_hidden_layers": 12,
53
+ "pad_token_id": 1,
54
+ "scale_embedding": false,
55
+ "num_beams": 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  },
 
 
57
  "vision_config": {
58
+ "model_type": "davit",
59
+ "drop_path_rate": 0.1,
60
+ "patch_size": [7, 3, 3, 3],
61
+ "patch_stride": [4, 2, 2, 2],
62
+ "patch_padding": [3, 1, 1, 1],
63
+ "patch_prenorm": [false, true, true, true],
64
+ "enable_checkpoint": false,
65
+ "dim_embed": [256, 512, 1024, 2048],
66
+ "num_heads": [8, 16, 32, 64],
67
+ "num_groups": [8, 16, 32, 64],
68
+ "depths": [1, 1, 9, 1],
69
+ "window_size": 12,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  "projection_dim": 1024,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  "visual_temporal_embedding": {
72
+ "type": "COSINE",
73
+ "max_temporal_embeddings": 100
74
  },
75
+ "image_pos_embed": {
76
+ "type": "learned_abs_2d",
77
+ "max_pos_embeddings": 50
78
+ },
79
+ "image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
80
  },
81
+ "vocab_size": 51289,
82
+ "torch_dtype": "float32",
83
+ "transformers_version": "4.41.0.dev0",
84
+ "is_encoder_decoder": true
85
+ }
configuration_florence2.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import warnings
15
+ """ Florence-2 configuration"""
16
+
17
+ from typing import Optional
18
+
19
+ from transformers import AutoConfig
20
+ from transformers.configuration_utils import PretrainedConfig
21
+ from transformers.utils import logging
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ class Florence2VisionConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
28
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
29
+ defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+ Args:
35
+ drop_path_rate (`float`, *optional*, defaults to 0.1):
36
+ The dropout rate of the drop path layer.
37
+ patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
38
+ The patch size of the image.
39
+ patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
40
+ The patch stride of the image.
41
+ patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
42
+ The patch padding of the image.
43
+ patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
44
+ Whether to apply layer normalization before the patch embedding layer.
45
+ enable_checkpoint (`bool`, *optional*, defaults to False):
46
+ Whether to enable checkpointing.
47
+ dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
48
+ The dimension of the embedding layer.
49
+ num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
50
+ The number of attention heads.
51
+ num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
52
+ The number of groups.
53
+ depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
54
+ The depth of the model.
55
+ window_size (`int`, *optional*, defaults to 12):
56
+ The window size of the model.
57
+ projection_dim (`int`, *optional*, defaults to 1024):
58
+ The dimension of the projection layer.
59
+ visual_temporal_embedding (`dict`, *optional*):
60
+ The configuration of the visual temporal embedding.
61
+ image_pos_embed (`dict`, *optional*):
62
+ The configuration of the image position embedding.
63
+ image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
64
+ The source of the image feature.
65
+ Example:
66
+
67
+ ```python
68
+ >>> from transformers import Florence2VisionConfig, Florence2VisionModel
69
+
70
+ >>> # Initializing a Florence2 Vision style configuration
71
+ >>> configuration = Florence2VisionConfig()
72
+
73
+ >>> # Initializing a model (with random weights)
74
+ >>> model = Florence2VisionModel(configuration)
75
+
76
+ >>> # Accessing the model configuration
77
+ >>> configuration = model.config
78
+ ```"""
79
+
80
+ model_type = "florence2_vision"
81
+ keys_to_ignore_at_inference = ["past_key_values"]
82
+
83
+ def __init__(
84
+ self,
85
+ drop_path_rate=0.1,
86
+ patch_size=[7, 3, 3, 3],
87
+ patch_stride=[4, 2, 2, 2],
88
+ patch_padding=[3, 1, 1, 1],
89
+ patch_prenorm=[False, True, True, True],
90
+ enable_checkpoint=False,
91
+ dim_embed=[256, 512, 1024, 2048],
92
+ num_heads=[8, 16, 32, 64],
93
+ num_groups=[8, 16, 32, 64],
94
+ depths=[1, 1, 9, 1],
95
+ window_size=12,
96
+ projection_dim=1024,
97
+ visual_temporal_embedding=None,
98
+ image_pos_embed=None,
99
+ image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
100
+ **kwargs,
101
+ ):
102
+ self.drop_path_rate = drop_path_rate
103
+ self.patch_size = patch_size
104
+ self.patch_stride = patch_stride
105
+ self.patch_padding = patch_padding
106
+ self.patch_prenorm = patch_prenorm
107
+ self.enable_checkpoint = enable_checkpoint
108
+ self.dim_embed = dim_embed
109
+ self.num_heads = num_heads
110
+ self.num_groups = num_groups
111
+ self.depths = depths
112
+ self.window_size = window_size
113
+ self.projection_dim = projection_dim
114
+ self.visual_temporal_embedding = visual_temporal_embedding
115
+ self.image_pos_embed = image_pos_embed
116
+ self.image_feature_source = image_feature_source
117
+
118
+ super().__init__(**kwargs)
119
+
120
+
121
+
122
+ class Florence2LanguageConfig(PretrainedConfig):
123
+ r"""
124
+ This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
125
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
126
+ defaults will yield a similar configuration to that of the BART
127
+ [facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
128
+
129
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
130
+ documentation from [`PretrainedConfig`] for more information.
131
+
132
+
133
+ Args:
134
+ vocab_size (`int`, *optional*, defaults to 51289):
135
+ Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
136
+ `inputs_ids` passed when calling [`Florence2LanguageModel`].
137
+ d_model (`int`, *optional*, defaults to 1024):
138
+ Dimensionality of the layers and the pooler layer.
139
+ encoder_layers (`int`, *optional*, defaults to 12):
140
+ Number of encoder layers.
141
+ decoder_layers (`int`, *optional*, defaults to 12):
142
+ Number of decoder layers.
143
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
144
+ Number of attention heads for each attention layer in the Transformer encoder.
145
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
146
+ Number of attention heads for each attention layer in the Transformer decoder.
147
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
148
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
149
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
150
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
151
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
152
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
153
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
154
+ dropout (`float`, *optional*, defaults to 0.1):
155
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
156
+ attention_dropout (`float`, *optional*, defaults to 0.0):
157
+ The dropout ratio for the attention probabilities.
158
+ activation_dropout (`float`, *optional*, defaults to 0.0):
159
+ The dropout ratio for activations inside the fully connected layer.
160
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
161
+ The dropout ratio for classifier.
162
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
163
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
164
+ just in case (e.g., 512 or 1024 or 2048).
165
+ init_std (`float`, *optional*, defaults to 0.02):
166
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
167
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
168
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
169
+ for more details.
170
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
171
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
172
+ for more details.
173
+ scale_embedding (`bool`, *optional*, defaults to `False`):
174
+ Scale embeddings by diving by sqrt(d_model).
175
+ use_cache (`bool`, *optional*, defaults to `True`):
176
+ Whether or not the model should return the last key/values attentions (not used by all models).
177
+ num_labels (`int`, *optional*, defaults to 3):
178
+ The number of labels to use in [`Florence2LanguageForSequenceClassification`].
179
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
180
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
181
+ `eos_token_id`.
182
+
183
+ Example:
184
+
185
+ ```python
186
+ >>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
187
+
188
+ >>> # Initializing a Florence2 Language style configuration
189
+ >>> configuration = Florence2LanguageConfig()
190
+
191
+ >>> # Initializing a model (with random weights)
192
+ >>> model = Florence2LangaugeModel(configuration)
193
+
194
+ >>> # Accessing the model configuration
195
+ >>> configuration = model.config
196
+ ```"""
197
+
198
+ model_type = "florence2_language"
199
+ keys_to_ignore_at_inference = ["past_key_values"]
200
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
201
+
202
+ def __init__(
203
+ self,
204
+ vocab_size=51289,
205
+ max_position_embeddings=1024,
206
+ encoder_layers=12,
207
+ encoder_ffn_dim=4096,
208
+ encoder_attention_heads=16,
209
+ decoder_layers=12,
210
+ decoder_ffn_dim=4096,
211
+ decoder_attention_heads=16,
212
+ encoder_layerdrop=0.0,
213
+ decoder_layerdrop=0.0,
214
+ activation_function="gelu",
215
+ d_model=1024,
216
+ dropout=0.1,
217
+ attention_dropout=0.0,
218
+ activation_dropout=0.0,
219
+ init_std=0.02,
220
+ classifier_dropout=0.0,
221
+ scale_embedding=False,
222
+ use_cache=True,
223
+ num_labels=3,
224
+ pad_token_id=1,
225
+ bos_token_id=0,
226
+ eos_token_id=2,
227
+ is_encoder_decoder=True,
228
+ decoder_start_token_id=2,
229
+ forced_eos_token_id=2,
230
+ **kwargs,
231
+ ):
232
+ self.vocab_size = vocab_size
233
+ self.max_position_embeddings = max_position_embeddings
234
+ self.d_model = d_model
235
+ self.encoder_ffn_dim = encoder_ffn_dim
236
+ self.encoder_layers = encoder_layers
237
+ self.encoder_attention_heads = encoder_attention_heads
238
+ self.decoder_ffn_dim = decoder_ffn_dim
239
+ self.decoder_layers = decoder_layers
240
+ self.decoder_attention_heads = decoder_attention_heads
241
+ self.dropout = dropout
242
+ self.attention_dropout = attention_dropout
243
+ self.activation_dropout = activation_dropout
244
+ self.activation_function = activation_function
245
+ self.init_std = init_std
246
+ self.encoder_layerdrop = encoder_layerdrop
247
+ self.decoder_layerdrop = decoder_layerdrop
248
+ self.classifier_dropout = classifier_dropout
249
+ self.use_cache = use_cache
250
+ self.num_hidden_layers = encoder_layers
251
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
252
+
253
+ super().__init__(
254
+ num_labels=num_labels,
255
+ pad_token_id=pad_token_id,
256
+ bos_token_id=bos_token_id,
257
+ eos_token_id=eos_token_id,
258
+ is_encoder_decoder=is_encoder_decoder,
259
+ decoder_start_token_id=decoder_start_token_id,
260
+ forced_eos_token_id=forced_eos_token_id,
261
+ **kwargs,
262
+ )
263
+
264
+ # ensure backward compatibility for BART CNN models
265
+ if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
266
+ self.forced_bos_token_id = self.bos_token_id
267
+ warnings.warn(
268
+ f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
269
+ "The config can simply be saved and uploaded again to be fixed."
270
+ )
271
+
272
+ class Florence2Config(PretrainedConfig):
273
+ r"""
274
+ This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
275
+ Florence-2 model according to the specified arguments, defining the model architecture.
276
+
277
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
278
+ documentation from [`PretrainedConfig`] for more information.
279
+
280
+ Args:
281
+ vision_config (`Florence2VisionConfig`, *optional*):
282
+ Custom vision config or dict
283
+ text_config (`Union[AutoConfig, dict]`, *optional*):
284
+ The config object of the text backbone.
285
+ ignore_index (`int`, *optional*, defaults to -100):
286
+ The ignore index for the loss function.
287
+ vocab_size (`int`, *optional*, defaults to 51289):
288
+ Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
289
+ `inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
290
+ projection_dim (`int`, *optional*, defaults to 1024):
291
+ Dimension of the multimodal projection space.
292
+
293
+ Example:
294
+
295
+ ```python
296
+ >>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
297
+
298
+ >>> # Initializing a clip-like vision config
299
+ >>> vision_config = CLIPVisionConfig()
300
+
301
+ >>> # Initializing a Bart config
302
+ >>> text_config = BartConfig()
303
+
304
+ >>> # Initializing a Florence-2 configuration
305
+ >>> configuration = Florence2Config(vision_config, text_config)
306
+
307
+ >>> # Initializing a model from the florence-2 configuration
308
+ >>> model = Florence2ForConditionalGeneration(configuration)
309
+
310
+ >>> # Accessing the model configuration
311
+ >>> configuration = model.config
312
+ ```"""
313
+
314
+ model_type = "florence2"
315
+ is_composition = False
316
+
317
+ def __init__(
318
+ self,
319
+ vision_config=None,
320
+ text_config=None,
321
+ ignore_index=-100,
322
+ vocab_size=51289,
323
+ projection_dim=1024,
324
+ **kwargs,
325
+ ):
326
+ self.ignore_index = ignore_index
327
+ self.vocab_size = vocab_size
328
+ self.projection_dim = projection_dim
329
+ if vision_config is not None:
330
+ vision_config = PretrainedConfig(**vision_config)
331
+ self.vision_config = vision_config
332
+ self.vocab_size = self.vocab_size
333
+
334
+ self.text_config = text_config
335
+ if text_config is not None:
336
+ self.text_config = Florence2LanguageConfig(**text_config)
337
+
338
+
339
+ super().__init__(**kwargs)
modeling_florence2.py ADDED
The diff for this file is too large to render. See raw diff