--- tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert_finetuned-finetuned-gtzan results: [] --- # distilhubert_finetuned-finetuned-gtzan This model is a fine-tuned version of [JanLilan/distilhubert_finetuned-distilhubert](https://huggingface.co/JanLilan/distilhubert_finetuned-distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6325 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8777 | 0.99 | 33 | 0.4485 | 0.8333 | | 0.6913 | 2.0 | 67 | 1.0592 | 0.7 | | 0.5494 | 2.99 | 100 | 0.6168 | 0.7667 | | 0.3589 | 4.0 | 134 | 0.7820 | 0.7833 | | 0.2049 | 4.99 | 167 | 0.9303 | 0.7833 | | 0.1663 | 6.0 | 201 | 0.3570 | 0.9 | | 0.0446 | 6.99 | 234 | 0.5636 | 0.8667 | | 0.0313 | 8.0 | 268 | 0.6592 | 0.85 | | 0.0007 | 8.99 | 301 | 0.4721 | 0.8833 | | 0.0004 | 9.85 | 330 | 0.6325 | 0.9 | Check it out [colab](https://colab.research.google.com/drive/1hDLWdDKAaULLIkiMNhuz_z5SVGfW-78_?usp=sharing) ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3