MikkoLipsanen commited on
Commit
4d10207
1 Parent(s): 93e86da

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -54,7 +54,7 @@ Default settings were used for other training hyperparameters (find more informa
54
 
55
  Model training was performed using the following code:
56
 
57
- ```
58
  from ultralytics import YOLO
59
 
60
  # Use pretrained Yolo segmentation model
@@ -74,7 +74,7 @@ model.train(data=yaml_path, name='model_name', epochs=100, imgsz=2560, max_det=5
74
 
75
  Evaluation results using the validation dataset are listed below:
76
  |Class|Images|Class instances|Box precision|Box recall|Box mAP50|Box mAP50-95
77
- -|-|-|-|-|-|-
78
  Intersection|25|10411|0.996|0.997|0.994|0.653
79
 
80
  More information on the performance metrics can be found [here](https://docs.ultralytics.com/guides/yolo-performance-metrics/).
@@ -82,13 +82,13 @@ More information on the performance metrics can be found [here](https://docs.ult
82
  ## Inference
83
 
84
  If the model file `huoneistokortit_13082024.pt` is downloaded to a folder `\models\ huoneistokortit_13082024.pt`
85
- and the input image path is `\data\image.jpg', inference can be perfomed using the following code:
86
 
87
- ```
88
  from ultralytics import YOLO
89
 
90
  # Initialize model
91
- model = YOLO(`\models\ huoneistokortit_13082024.pt`)
92
- prediction_results = model.predict(source=`\data\image.jpg', save=True)
93
  ```
94
  More information for available inference arguments can be found [here](https://docs.ultralytics.com/modes/predict/#inference-arguments).
 
54
 
55
  Model training was performed using the following code:
56
 
57
+ ```python
58
  from ultralytics import YOLO
59
 
60
  # Use pretrained Yolo segmentation model
 
74
 
75
  Evaluation results using the validation dataset are listed below:
76
  |Class|Images|Class instances|Box precision|Box recall|Box mAP50|Box mAP50-95
77
+ |:----|:----|:----|:----|:----|:----|:----|
78
  Intersection|25|10411|0.996|0.997|0.994|0.653
79
 
80
  More information on the performance metrics can be found [here](https://docs.ultralytics.com/guides/yolo-performance-metrics/).
 
82
  ## Inference
83
 
84
  If the model file `huoneistokortit_13082024.pt` is downloaded to a folder `\models\ huoneistokortit_13082024.pt`
85
+ and the input image path is `\data\image.jpg`, inference can be perfomed using the following code:
86
 
87
+ ```python
88
  from ultralytics import YOLO
89
 
90
  # Initialize model
91
+ model = YOLO('\models\ huoneistokortit_13082024.pt')
92
+ prediction_results = model.predict(source='\data\image.jpg', save=True)
93
  ```
94
  More information for available inference arguments can be found [here](https://docs.ultralytics.com/modes/predict/#inference-arguments).