Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,36 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
-------------------------HOW TO USE---------------------
|
5 |
+
from transformers import AutoProcessor, AutoModelForObjectDetection
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
# colors for visualization
|
11 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
12 |
+
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
13 |
+
|
14 |
+
def plot_results(pil_img, scores, labels, boxes):
|
15 |
+
plt.figure(figsize=(16,10))
|
16 |
+
plt.imshow(pil_img)
|
17 |
+
ax = plt.gca()
|
18 |
+
colors = COLORS * 100
|
19 |
+
for score, label, (xmin, ymin, xmax, ymax),c in zip(scores.tolist(), labels.tolist(), boxes.tolist(), colors):
|
20 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
|
21 |
+
fill=False, color=c, linewidth=3))
|
22 |
+
text = f'{model.config.id2label[label]}: {score:0.2f}'
|
23 |
+
ax.text(xmin, ymin, text, fontsize=15,
|
24 |
+
bbox=dict(facecolor='yellow', alpha=0.5))
|
25 |
+
plt.axis('off')
|
26 |
+
plt.show()
|
27 |
+
|
28 |
+
processor = AutoProcessor.from_pretrained('Lam-Hung/orange_detetion_model')
|
29 |
+
model = AutoModelForObjectDetection.from_pretrained('Lam-Hung/orange_detetion_model').to('cuda')
|
30 |
+
|
31 |
+
image = Image.open('/content/C59_59.jpeg')
|
32 |
+
inputs = processor(image, return_tensors="pt").to('cuda')
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model(**inputs)
|
35 |
+
results = processor.post_process_object_detection(outputs, threshold=0.3, target_sizes=[image.size[::-1]])[0]
|
36 |
+
plot_results(image, results['scores'], results['labels'], results['boxes'])
|