File size: 53,662 Bytes
7f99ab1
 
48abd89
 
0c1a0b0
46ffb6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f99ab1
 
 
 
 
 
 
 
410f99f
7f99ab1
510bb74
e563c48
7f99ab1
 
 
 
 
 
 
0757ec1
7f99ab1
 
 
0c1a0b0
 
 
 
 
 
 
 
 
7f99ab1
0c1a0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f99ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb8c47
7f99ab1
 
 
 
 
 
 
 
6626e43
7f99ab1
 
 
d29c3f2
7f99ab1
 
 
 
3af61e9
7f99ab1
 
 
 
 
 
18a9619
7f99ab1
a024601
d3786d0
a024601
da2513d
7f99ab1
 
3a227db
 
7f99ab1
18a9619
7f99ab1
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
---
tags:
- mteb
- transformers
- sentence-transformers
model-index:
- name: Linq-Embed-Mistral
  results:
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_counterfactual
      name: MTEB AmazonCounterfactualClassification (en)
      config: en
      split: test
      revision: e8379541af4e31359cca9fbcf4b00f2671dba205
    metrics:
    - type: accuracy
      value: 84.43283582089552
    - type: ap
      value: 50.39222584035829
    - type: f1
      value: 78.47906270064071
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_polarity
      name: MTEB AmazonPolarityClassification
      config: default
      split: test
      revision: e2d317d38cd51312af73b3d32a06d1a08b442046
    metrics:
    - type: accuracy
      value: 95.70445
    - type: ap
      value: 94.28273900595173
    - type: f1
      value: 95.70048412173735
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_reviews_multi
      name: MTEB AmazonReviewsClassification (en)
      config: en
      split: test
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
    metrics:
    - type: accuracy
      value: 57.644000000000005
    - type: f1
      value: 56.993648296704876
  - task:
      type: Retrieval
    dataset:
      type: mteb/arguana
      name: MTEB ArguAna
      config: default
      split: test
      revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
    metrics:
    - type: map_at_1
      value: 45.804
    - type: map_at_10
      value: 61.742
    - type: map_at_100
      value: 62.07899999999999
    - type: map_at_1000
      value: 62.08
    - type: map_at_3
      value: 57.717
    - type: map_at_5
      value: 60.27
    - type: mrr_at_1
      value: 47.226
    - type: mrr_at_10
      value: 62.256
    - type: mrr_at_100
      value: 62.601
    - type: mrr_at_1000
      value: 62.601
    - type: mrr_at_3
      value: 58.203
    - type: mrr_at_5
      value: 60.767
    - type: ndcg_at_1
      value: 45.804
    - type: ndcg_at_10
      value: 69.649
    - type: ndcg_at_100
      value: 70.902
    - type: ndcg_at_1000
      value: 70.91199999999999
    - type: ndcg_at_3
      value: 61.497
    - type: ndcg_at_5
      value: 66.097
    - type: precision_at_1
      value: 45.804
    - type: precision_at_10
      value: 9.452
    - type: precision_at_100
      value: 0.996
    - type: precision_at_1000
      value: 0.1
    - type: precision_at_3
      value: 24.135
    - type: precision_at_5
      value: 16.714000000000002
    - type: recall_at_1
      value: 45.804
    - type: recall_at_10
      value: 94.523
    - type: recall_at_100
      value: 99.57300000000001
    - type: recall_at_1000
      value: 99.644
    - type: recall_at_3
      value: 72.404
    - type: recall_at_5
      value: 83.57
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-p2p
      name: MTEB ArxivClusteringP2P
      config: default
      split: test
      revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
    metrics:
    - type: v_measure
      value: 51.47612678878609
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-s2s
      name: MTEB ArxivClusteringS2S
      config: default
      split: test
      revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
    metrics:
    - type: v_measure
      value: 47.2977392340418
  - task:
      type: Reranking
    dataset:
      type: mteb/askubuntudupquestions-reranking
      name: MTEB AskUbuntuDupQuestions
      config: default
      split: test
      revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
    metrics:
    - type: map
      value: 66.82016765243456
    - type: mrr
      value: 79.55227982236292
  - task:
      type: STS
    dataset:
      type: mteb/biosses-sts
      name: MTEB BIOSSES
      config: default
      split: test
      revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
    metrics:
    - type: cos_sim_pearson
      value: 89.15068664186332
    - type: cos_sim_spearman
      value: 86.4013663041054
    - type: euclidean_pearson
      value: 87.36391302921588
    - type: euclidean_spearman
      value: 86.4013663041054
    - type: manhattan_pearson
      value: 87.46116676558589
    - type: manhattan_spearman
      value: 86.78149544753352
  - task:
      type: Classification
    dataset:
      type: mteb/banking77
      name: MTEB Banking77Classification
      config: default
      split: test
      revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
    metrics:
    - type: accuracy
      value: 87.88311688311688
    - type: f1
      value: 87.82368154811464
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-p2p
      name: MTEB BiorxivClusteringP2P
      config: default
      split: test
      revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
    metrics:
    - type: v_measure
      value: 42.72860396750569
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-s2s
      name: MTEB BiorxivClusteringS2S
      config: default
      split: test
      revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
    metrics:
    - type: v_measure
      value: 39.58412067938718
  - task:
      type: Retrieval
    dataset:
      type: mteb/cqadupstack
      name: MTEB CQADupstackRetrieval
      config: default
      split: test
      revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
    metrics:
    - type: map_at_1
      value: 30.082666666666665
    - type: map_at_10
      value: 41.13875
    - type: map_at_100
      value: 42.45525
    - type: map_at_1000
      value: 42.561249999999994
    - type: map_at_3
      value: 37.822750000000006
    - type: map_at_5
      value: 39.62658333333333
    - type: mrr_at_1
      value: 35.584
    - type: mrr_at_10
      value: 45.4675
    - type: mrr_at_100
      value: 46.31016666666667
    - type: mrr_at_1000
      value: 46.35191666666666
    - type: mrr_at_3
      value: 42.86674999999999
    - type: mrr_at_5
      value: 44.31341666666666
    - type: ndcg_at_1
      value: 35.584
    - type: ndcg_at_10
      value: 47.26516666666667
    - type: ndcg_at_100
      value: 52.49108333333332
    - type: ndcg_at_1000
      value: 54.24575
    - type: ndcg_at_3
      value: 41.83433333333334
    - type: ndcg_at_5
      value: 44.29899999999999
    - type: precision_at_1
      value: 35.584
    - type: precision_at_10
      value: 8.390333333333334
    - type: precision_at_100
      value: 1.2941666666666667
    - type: precision_at_1000
      value: 0.16308333333333336
    - type: precision_at_3
      value: 19.414583333333333
    - type: precision_at_5
      value: 13.751
    - type: recall_at_1
      value: 30.082666666666665
    - type: recall_at_10
      value: 60.88875
    - type: recall_at_100
      value: 83.35141666666667
    - type: recall_at_1000
      value: 95.0805
    - type: recall_at_3
      value: 45.683749999999996
    - type: recall_at_5
      value: 52.08208333333333
  - task:
      type: Retrieval
    dataset:
      type: mteb/climate-fever
      name: MTEB ClimateFEVER
      config: default
      split: test
      revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
    metrics:
    - type: map_at_1
      value: 16.747
    - type: map_at_10
      value: 29.168
    - type: map_at_100
      value: 31.304
    - type: map_at_1000
      value: 31.496000000000002
    - type: map_at_3
      value: 24.57
    - type: map_at_5
      value: 26.886
    - type: mrr_at_1
      value: 37.524
    - type: mrr_at_10
      value: 50.588
    - type: mrr_at_100
      value: 51.28
    - type: mrr_at_1000
      value: 51.29899999999999
    - type: mrr_at_3
      value: 47.438
    - type: mrr_at_5
      value: 49.434
    - type: ndcg_at_1
      value: 37.524
    - type: ndcg_at_10
      value: 39.11
    - type: ndcg_at_100
      value: 46.373999999999995
    - type: ndcg_at_1000
      value: 49.370999999999995
    - type: ndcg_at_3
      value: 32.964
    - type: ndcg_at_5
      value: 35.028
    - type: precision_at_1
      value: 37.524
    - type: precision_at_10
      value: 12.137
    - type: precision_at_100
      value: 1.9929999999999999
    - type: precision_at_1000
      value: 0.256
    - type: precision_at_3
      value: 24.886
    - type: precision_at_5
      value: 18.762
    - type: recall_at_1
      value: 16.747
    - type: recall_at_10
      value: 45.486
    - type: recall_at_100
      value: 69.705
    - type: recall_at_1000
      value: 86.119
    - type: recall_at_3
      value: 30.070999999999998
    - type: recall_at_5
      value: 36.565
  - task:
      type: Retrieval
    dataset:
      type: mteb/dbpedia
      name: MTEB DBPedia
      config: default
      split: test
      revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
    metrics:
    - type: map_at_1
      value: 10.495000000000001
    - type: map_at_10
      value: 24.005000000000003
    - type: map_at_100
      value: 34.37
    - type: map_at_1000
      value: 36.268
    - type: map_at_3
      value: 16.694
    - type: map_at_5
      value: 19.845
    - type: mrr_at_1
      value: 75.5
    - type: mrr_at_10
      value: 82.458
    - type: mrr_at_100
      value: 82.638
    - type: mrr_at_1000
      value: 82.64
    - type: mrr_at_3
      value: 81.25
    - type: mrr_at_5
      value: 82.125
    - type: ndcg_at_1
      value: 64.625
    - type: ndcg_at_10
      value: 51.322
    - type: ndcg_at_100
      value: 55.413999999999994
    - type: ndcg_at_1000
      value: 62.169
    - type: ndcg_at_3
      value: 56.818999999999996
    - type: ndcg_at_5
      value: 54.32900000000001
    - type: precision_at_1
      value: 75.5
    - type: precision_at_10
      value: 40.849999999999994
    - type: precision_at_100
      value: 12.882
    - type: precision_at_1000
      value: 2.394
    - type: precision_at_3
      value: 59.667
    - type: precision_at_5
      value: 52.2
    - type: recall_at_1
      value: 10.495000000000001
    - type: recall_at_10
      value: 29.226000000000003
    - type: recall_at_100
      value: 59.614
    - type: recall_at_1000
      value: 81.862
    - type: recall_at_3
      value: 17.97
    - type: recall_at_5
      value: 22.438
  - task:
      type: Classification
    dataset:
      type: mteb/emotion
      name: MTEB EmotionClassification
      config: default
      split: test
      revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
    metrics:
    - type: accuracy
      value: 51.82
    - type: f1
      value: 47.794956731921054
  - task:
      type: Retrieval
    dataset:
      type: mteb/fever
      name: MTEB FEVER
      config: default
      split: test
      revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
    metrics:
    - type: map_at_1
      value: 82.52199999999999
    - type: map_at_10
      value: 89.794
    - type: map_at_100
      value: 89.962
    - type: map_at_1000
      value: 89.972
    - type: map_at_3
      value: 88.95100000000001
    - type: map_at_5
      value: 89.524
    - type: mrr_at_1
      value: 88.809
    - type: mrr_at_10
      value: 93.554
    - type: mrr_at_100
      value: 93.577
    - type: mrr_at_1000
      value: 93.577
    - type: mrr_at_3
      value: 93.324
    - type: mrr_at_5
      value: 93.516
    - type: ndcg_at_1
      value: 88.809
    - type: ndcg_at_10
      value: 92.419
    - type: ndcg_at_100
      value: 92.95
    - type: ndcg_at_1000
      value: 93.10000000000001
    - type: ndcg_at_3
      value: 91.45299999999999
    - type: ndcg_at_5
      value: 92.05
    - type: precision_at_1
      value: 88.809
    - type: precision_at_10
      value: 10.911999999999999
    - type: precision_at_100
      value: 1.143
    - type: precision_at_1000
      value: 0.117
    - type: precision_at_3
      value: 34.623
    - type: precision_at_5
      value: 21.343999999999998
    - type: recall_at_1
      value: 82.52199999999999
    - type: recall_at_10
      value: 96.59400000000001
    - type: recall_at_100
      value: 98.55699999999999
    - type: recall_at_1000
      value: 99.413
    - type: recall_at_3
      value: 94.02199999999999
    - type: recall_at_5
      value: 95.582
  - task:
      type: Retrieval
    dataset:
      type: mteb/fiqa
      name: MTEB FiQA2018
      config: default
      split: test
      revision: 27a168819829fe9bcd655c2df245fb19452e8e06
    metrics:
    - type: map_at_1
      value: 32.842
    - type: map_at_10
      value: 53.147
    - type: map_at_100
      value: 55.265
    - type: map_at_1000
      value: 55.37
    - type: map_at_3
      value: 46.495
    - type: map_at_5
      value: 50.214999999999996
    - type: mrr_at_1
      value: 61.574
    - type: mrr_at_10
      value: 68.426
    - type: mrr_at_100
      value: 68.935
    - type: mrr_at_1000
      value: 68.95400000000001
    - type: mrr_at_3
      value: 66.307
    - type: mrr_at_5
      value: 67.611
    - type: ndcg_at_1
      value: 61.574
    - type: ndcg_at_10
      value: 61.205
    - type: ndcg_at_100
      value: 67.25999999999999
    - type: ndcg_at_1000
      value: 68.657
    - type: ndcg_at_3
      value: 56.717
    - type: ndcg_at_5
      value: 58.196999999999996
    - type: precision_at_1
      value: 61.574
    - type: precision_at_10
      value: 16.852
    - type: precision_at_100
      value: 2.33
    - type: precision_at_1000
      value: 0.256
    - type: precision_at_3
      value: 37.5
    - type: precision_at_5
      value: 27.468999999999998
    - type: recall_at_1
      value: 32.842
    - type: recall_at_10
      value: 68.157
    - type: recall_at_100
      value: 89.5
    - type: recall_at_1000
      value: 97.68599999999999
    - type: recall_at_3
      value: 50.783
    - type: recall_at_5
      value: 58.672000000000004
  - task:
      type: Retrieval
    dataset:
      type: mteb/hotpotqa
      name: MTEB HotpotQA
      config: default
      split: test
      revision: ab518f4d6fcca38d87c25209f94beba119d02014
    metrics:
    - type: map_at_1
      value: 39.068000000000005
    - type: map_at_10
      value: 69.253
    - type: map_at_100
      value: 70.036
    - type: map_at_1000
      value: 70.081
    - type: map_at_3
      value: 65.621
    - type: map_at_5
      value: 67.976
    - type: mrr_at_1
      value: 78.13600000000001
    - type: mrr_at_10
      value: 84.328
    - type: mrr_at_100
      value: 84.515
    - type: mrr_at_1000
      value: 84.52300000000001
    - type: mrr_at_3
      value: 83.52199999999999
    - type: mrr_at_5
      value: 84.019
    - type: ndcg_at_1
      value: 78.13600000000001
    - type: ndcg_at_10
      value: 76.236
    - type: ndcg_at_100
      value: 78.891
    - type: ndcg_at_1000
      value: 79.73400000000001
    - type: ndcg_at_3
      value: 71.258
    - type: ndcg_at_5
      value: 74.129
    - type: precision_at_1
      value: 78.13600000000001
    - type: precision_at_10
      value: 16.347
    - type: precision_at_100
      value: 1.839
    - type: precision_at_1000
      value: 0.19499999999999998
    - type: precision_at_3
      value: 47.189
    - type: precision_at_5
      value: 30.581999999999997
    - type: recall_at_1
      value: 39.068000000000005
    - type: recall_at_10
      value: 81.735
    - type: recall_at_100
      value: 91.945
    - type: recall_at_1000
      value: 97.44800000000001
    - type: recall_at_3
      value: 70.783
    - type: recall_at_5
      value: 76.455
  - task:
      type: Classification
    dataset:
      type: mteb/imdb
      name: MTEB ImdbClassification
      config: default
      split: test
      revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
    metrics:
    - type: accuracy
      value: 94.7764
    - type: ap
      value: 92.67841294818406
    - type: f1
      value: 94.77375157383646
  - task:
      type: Retrieval
    dataset:
      type: mteb/msmarco
      name: MTEB MSMARCO
      config: default
      split: dev
      revision: c5a29a104738b98a9e76336939199e264163d4a0
    metrics:
    - type: map_at_1
      value: 24.624
    - type: map_at_10
      value: 37.861
    - type: map_at_100
      value: 39.011
    - type: map_at_1000
      value: 39.052
    - type: map_at_3
      value: 33.76
    - type: map_at_5
      value: 36.153
    - type: mrr_at_1
      value: 25.358000000000004
    - type: mrr_at_10
      value: 38.5
    - type: mrr_at_100
      value: 39.572
    - type: mrr_at_1000
      value: 39.607
    - type: mrr_at_3
      value: 34.491
    - type: mrr_at_5
      value: 36.83
    - type: ndcg_at_1
      value: 25.358000000000004
    - type: ndcg_at_10
      value: 45.214999999999996
    - type: ndcg_at_100
      value: 50.56
    - type: ndcg_at_1000
      value: 51.507999999999996
    - type: ndcg_at_3
      value: 36.925999999999995
    - type: ndcg_at_5
      value: 41.182
    - type: precision_at_1
      value: 25.358000000000004
    - type: precision_at_10
      value: 7.090000000000001
    - type: precision_at_100
      value: 0.9740000000000001
    - type: precision_at_1000
      value: 0.106
    - type: precision_at_3
      value: 15.697
    - type: precision_at_5
      value: 11.599
    - type: recall_at_1
      value: 24.624
    - type: recall_at_10
      value: 67.78699999999999
    - type: recall_at_100
      value: 92.11200000000001
    - type: recall_at_1000
      value: 99.208
    - type: recall_at_3
      value: 45.362
    - type: recall_at_5
      value: 55.58
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_domain
      name: MTEB MTOPDomainClassification (en)
      config: en
      split: test
      revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
    metrics:
    - type: accuracy
      value: 96.83310533515733
    - type: f1
      value: 96.57069781347995
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_intent
      name: MTEB MTOPIntentClassification (en)
      config: en
      split: test
      revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
    metrics:
    - type: accuracy
      value: 89.5690834473324
    - type: f1
      value: 73.7275204564728
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_intent
      name: MTEB MassiveIntentClassification (en)
      config: en
      split: test
      revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
    metrics:
    - type: accuracy
      value: 82.67316745124411
    - type: f1
      value: 79.70626515721662
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_scenario
      name: MTEB MassiveScenarioClassification (en)
      config: en
      split: test
      revision: 7d571f92784cd94a019292a1f45445077d0ef634
    metrics:
    - type: accuracy
      value: 85.01344989912575
    - type: f1
      value: 84.45181022816965
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-p2p
      name: MTEB MedrxivClusteringP2P
      config: default
      split: test
      revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
    metrics:
    - type: v_measure
      value: 37.843426126777295
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-s2s
      name: MTEB MedrxivClusteringS2S
      config: default
      split: test
      revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
    metrics:
    - type: v_measure
      value: 36.651728547241476
  - task:
      type: Reranking
    dataset:
      type: mteb/mind_small
      name: MTEB MindSmallReranking
      config: default
      split: test
      revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
    metrics:
    - type: map
      value: 32.05750522793288
    - type: mrr
      value: 33.28067556869468
  - task:
      type: Retrieval
    dataset:
      type: mteb/nfcorpus
      name: MTEB NFCorpus
      config: default
      split: test
      revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
    metrics:
    - type: map_at_1
      value: 6.744
    - type: map_at_10
      value: 16.235
    - type: map_at_100
      value: 20.767
    - type: map_at_1000
      value: 22.469
    - type: map_at_3
      value: 11.708
    - type: map_at_5
      value: 13.924
    - type: mrr_at_1
      value: 55.728
    - type: mrr_at_10
      value: 63.869
    - type: mrr_at_100
      value: 64.322
    - type: mrr_at_1000
      value: 64.342
    - type: mrr_at_3
      value: 62.022999999999996
    - type: mrr_at_5
      value: 63.105999999999995
    - type: ndcg_at_1
      value: 53.096
    - type: ndcg_at_10
      value: 41.618
    - type: ndcg_at_100
      value: 38.562999999999995
    - type: ndcg_at_1000
      value: 47.006
    - type: ndcg_at_3
      value: 47.657
    - type: ndcg_at_5
      value: 45.562999999999995
    - type: precision_at_1
      value: 55.108000000000004
    - type: precision_at_10
      value: 30.464000000000002
    - type: precision_at_100
      value: 9.737
    - type: precision_at_1000
      value: 2.2720000000000002
    - type: precision_at_3
      value: 44.376
    - type: precision_at_5
      value: 39.505
    - type: recall_at_1
      value: 6.744
    - type: recall_at_10
      value: 21.11
    - type: recall_at_100
      value: 39.69
    - type: recall_at_1000
      value: 70.44
    - type: recall_at_3
      value: 13.120000000000001
    - type: recall_at_5
      value: 16.669
  - task:
      type: Retrieval
    dataset:
      type: mteb/nq
      name: MTEB NQ
      config: default
      split: test
      revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
    metrics:
    - type: map_at_1
      value: 46.263
    - type: map_at_10
      value: 63.525
    - type: map_at_100
      value: 64.142
    - type: map_at_1000
      value: 64.14800000000001
    - type: map_at_3
      value: 59.653
    - type: map_at_5
      value: 62.244
    - type: mrr_at_1
      value: 51.796
    - type: mrr_at_10
      value: 65.764
    - type: mrr_at_100
      value: 66.155
    - type: mrr_at_1000
      value: 66.158
    - type: mrr_at_3
      value: 63.05500000000001
    - type: mrr_at_5
      value: 64.924
    - type: ndcg_at_1
      value: 51.766999999999996
    - type: ndcg_at_10
      value: 70.626
    - type: ndcg_at_100
      value: 72.905
    - type: ndcg_at_1000
      value: 73.021
    - type: ndcg_at_3
      value: 63.937999999999995
    - type: ndcg_at_5
      value: 68.00699999999999
    - type: precision_at_1
      value: 51.766999999999996
    - type: precision_at_10
      value: 10.768
    - type: precision_at_100
      value: 1.203
    - type: precision_at_1000
      value: 0.121
    - type: precision_at_3
      value: 28.409000000000002
    - type: precision_at_5
      value: 19.502
    - type: recall_at_1
      value: 46.263
    - type: recall_at_10
      value: 89.554
    - type: recall_at_100
      value: 98.914
    - type: recall_at_1000
      value: 99.754
    - type: recall_at_3
      value: 72.89999999999999
    - type: recall_at_5
      value: 82.1
  - task:
      type: Retrieval
    dataset:
      type: mteb/quora
      name: MTEB QuoraRetrieval
      config: default
      split: test
      revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
    metrics:
    - type: map_at_1
      value: 72.748
    - type: map_at_10
      value: 86.87700000000001
    - type: map_at_100
      value: 87.46199999999999
    - type: map_at_1000
      value: 87.47399999999999
    - type: map_at_3
      value: 83.95700000000001
    - type: map_at_5
      value: 85.82300000000001
    - type: mrr_at_1
      value: 83.62
    - type: mrr_at_10
      value: 89.415
    - type: mrr_at_100
      value: 89.484
    - type: mrr_at_1000
      value: 89.484
    - type: mrr_at_3
      value: 88.633
    - type: mrr_at_5
      value: 89.176
    - type: ndcg_at_1
      value: 83.62
    - type: ndcg_at_10
      value: 90.27
    - type: ndcg_at_100
      value: 91.23599999999999
    - type: ndcg_at_1000
      value: 91.293
    - type: ndcg_at_3
      value: 87.69500000000001
    - type: ndcg_at_5
      value: 89.171
    - type: precision_at_1
      value: 83.62
    - type: precision_at_10
      value: 13.683
    - type: precision_at_100
      value: 1.542
    - type: precision_at_1000
      value: 0.157
    - type: precision_at_3
      value: 38.363
    - type: precision_at_5
      value: 25.196
    - type: recall_at_1
      value: 72.748
    - type: recall_at_10
      value: 96.61699999999999
    - type: recall_at_100
      value: 99.789
    - type: recall_at_1000
      value: 99.997
    - type: recall_at_3
      value: 89.21
    - type: recall_at_5
      value: 93.418
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering
      name: MTEB RedditClustering
      config: default
      split: test
      revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
    metrics:
    - type: v_measure
      value: 61.51909029379199
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering-p2p
      name: MTEB RedditClusteringP2P
      config: default
      split: test
      revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
    metrics:
    - type: v_measure
      value: 68.24483162045645
  - task:
      type: Retrieval
    dataset:
      type: mteb/scidocs
      name: MTEB SCIDOCS
      config: default
      split: test
      revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
    metrics:
    - type: map_at_1
      value: 4.793
    - type: map_at_10
      value: 13.092
    - type: map_at_100
      value: 15.434000000000001
    - type: map_at_1000
      value: 15.748999999999999
    - type: map_at_3
      value: 9.139
    - type: map_at_5
      value: 11.033
    - type: mrr_at_1
      value: 23.599999999999998
    - type: mrr_at_10
      value: 35.892
    - type: mrr_at_100
      value: 36.962
    - type: mrr_at_1000
      value: 37.009
    - type: mrr_at_3
      value: 32.550000000000004
    - type: mrr_at_5
      value: 34.415
    - type: ndcg_at_1
      value: 23.599999999999998
    - type: ndcg_at_10
      value: 21.932
    - type: ndcg_at_100
      value: 30.433
    - type: ndcg_at_1000
      value: 35.668
    - type: ndcg_at_3
      value: 20.483999999999998
    - type: ndcg_at_5
      value: 17.964
    - type: precision_at_1
      value: 23.599999999999998
    - type: precision_at_10
      value: 11.63
    - type: precision_at_100
      value: 2.383
    - type: precision_at_1000
      value: 0.363
    - type: precision_at_3
      value: 19.567
    - type: precision_at_5
      value: 16.06
    - type: recall_at_1
      value: 4.793
    - type: recall_at_10
      value: 23.558
    - type: recall_at_100
      value: 48.376999999999995
    - type: recall_at_1000
      value: 73.75699999999999
    - type: recall_at_3
      value: 11.903
    - type: recall_at_5
      value: 16.278000000000002
  - task:
      type: STS
    dataset:
      type: mteb/sickr-sts
      name: MTEB SICK-R
      config: default
      split: test
      revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
    metrics:
    - type: cos_sim_pearson
      value: 87.31937967632581
    - type: cos_sim_spearman
      value: 84.30523596401186
    - type: euclidean_pearson
      value: 84.19537987069458
    - type: euclidean_spearman
      value: 84.30522052876
    - type: manhattan_pearson
      value: 84.16420807244911
    - type: manhattan_spearman
      value: 84.28515410219309
  - task:
      type: STS
    dataset:
      type: mteb/sts12-sts
      name: MTEB STS12
      config: default
      split: test
      revision: a0d554a64d88156834ff5ae9920b964011b16384
    metrics:
    - type: cos_sim_pearson
      value: 86.17180810119646
    - type: cos_sim_spearman
      value: 78.44413657529002
    - type: euclidean_pearson
      value: 81.69054139101816
    - type: euclidean_spearman
      value: 78.44412412142488
    - type: manhattan_pearson
      value: 82.04975789626462
    - type: manhattan_spearman
      value: 78.78390856857253
  - task:
      type: STS
    dataset:
      type: mteb/sts13-sts
      name: MTEB STS13
      config: default
      split: test
      revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
    metrics:
    - type: cos_sim_pearson
      value: 88.35737871089687
    - type: cos_sim_spearman
      value: 88.26850223126127
    - type: euclidean_pearson
      value: 87.44100858335746
    - type: euclidean_spearman
      value: 88.26850223126127
    - type: manhattan_pearson
      value: 87.61572015772133
    - type: manhattan_spearman
      value: 88.56229552813319
  - task:
      type: STS
    dataset:
      type: mteb/sts14-sts
      name: MTEB STS14
      config: default
      split: test
      revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
    metrics:
    - type: cos_sim_pearson
      value: 86.8395966764906
    - type: cos_sim_spearman
      value: 84.49441798385489
    - type: euclidean_pearson
      value: 85.3259176121388
    - type: euclidean_spearman
      value: 84.49442124804686
    - type: manhattan_pearson
      value: 85.35153862806513
    - type: manhattan_spearman
      value: 84.60094577432503
  - task:
      type: STS
    dataset:
      type: mteb/sts15-sts
      name: MTEB STS15
      config: default
      split: test
      revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
    metrics:
    - type: cos_sim_pearson
      value: 90.14048269057345
    - type: cos_sim_spearman
      value: 90.27866978947013
    - type: euclidean_pearson
      value: 89.35308361940393
    - type: euclidean_spearman
      value: 90.27866978947013
    - type: manhattan_pearson
      value: 89.37601244066997
    - type: manhattan_spearman
      value: 90.42707449698062
  - task:
      type: STS
    dataset:
      type: mteb/sts16-sts
      name: MTEB STS16
      config: default
      split: test
      revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
    metrics:
    - type: cos_sim_pearson
      value: 86.8522678865688
    - type: cos_sim_spearman
      value: 87.37396401580446
    - type: euclidean_pearson
      value: 86.37219665505377
    - type: euclidean_spearman
      value: 87.37396385867791
    - type: manhattan_pearson
      value: 86.44628823799896
    - type: manhattan_spearman
      value: 87.49116026788859
  - task:
      type: STS
    dataset:
      type: mteb/sts17-crosslingual-sts
      name: MTEB STS17 (en-en)
      config: en-en
      split: test
      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
    metrics:
    - type: cos_sim_pearson
      value: 92.94248481968916
    - type: cos_sim_spearman
      value: 92.68185242943188
    - type: euclidean_pearson
      value: 92.33802342092979
    - type: euclidean_spearman
      value: 92.68185242943188
    - type: manhattan_pearson
      value: 92.2011323340474
    - type: manhattan_spearman
      value: 92.43364757640346
  - task:
      type: STS
    dataset:
      type: mteb/sts22-crosslingual-sts
      name: MTEB STS22 (en)
      config: en
      split: test
      revision: eea2b4fe26a775864c896887d910b76a8098ad3f
    metrics:
    - type: cos_sim_pearson
      value: 70.2918782293091
    - type: cos_sim_spearman
      value: 68.61986257003369
    - type: euclidean_pearson
      value: 70.51920905899138
    - type: euclidean_spearman
      value: 68.61986257003369
    - type: manhattan_pearson
      value: 70.64673843811433
    - type: manhattan_spearman
      value: 68.86711466517345
  - task:
      type: STS
    dataset:
      type: mteb/stsbenchmark-sts
      name: MTEB STSBenchmark
      config: default
      split: test
      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
    metrics:
    - type: cos_sim_pearson
      value: 88.62956838105524
    - type: cos_sim_spearman
      value: 88.80650007123052
    - type: euclidean_pearson
      value: 88.37976252122822
    - type: euclidean_spearman
      value: 88.80650007123052
    - type: manhattan_pearson
      value: 88.49866938476616
    - type: manhattan_spearman
      value: 89.02489665452616
  - task:
      type: Reranking
    dataset:
      type: mteb/scidocs-reranking
      name: MTEB SciDocsRR
      config: default
      split: test
      revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
    metrics:
    - type: map
      value: 86.40175229911527
    - type: mrr
      value: 96.61958230585682
  - task:
      type: Retrieval
    dataset:
      type: mteb/scifact
      name: MTEB SciFact
      config: default
      split: test
      revision: 0228b52cf27578f30900b9e5271d331663a030d7
    metrics:
    - type: map_at_1
      value: 63.05
    - type: map_at_10
      value: 73.844
    - type: map_at_100
      value: 74.313
    - type: map_at_1000
      value: 74.321
    - type: map_at_3
      value: 71.17999999999999
    - type: map_at_5
      value: 72.842
    - type: mrr_at_1
      value: 65.667
    - type: mrr_at_10
      value: 74.772
    - type: mrr_at_100
      value: 75.087
    - type: mrr_at_1000
      value: 75.095
    - type: mrr_at_3
      value: 72.944
    - type: mrr_at_5
      value: 74.078
    - type: ndcg_at_1
      value: 65.667
    - type: ndcg_at_10
      value: 78.31700000000001
    - type: ndcg_at_100
      value: 79.969
    - type: ndcg_at_1000
      value: 80.25
    - type: ndcg_at_3
      value: 74.099
    - type: ndcg_at_5
      value: 76.338
    - type: precision_at_1
      value: 65.667
    - type: precision_at_10
      value: 10.233
    - type: precision_at_100
      value: 1.107
    - type: precision_at_1000
      value: 0.11299999999999999
    - type: precision_at_3
      value: 28.889
    - type: precision_at_5
      value: 19.0
    - type: recall_at_1
      value: 63.05
    - type: recall_at_10
      value: 90.822
    - type: recall_at_100
      value: 97.667
    - type: recall_at_1000
      value: 100.0
    - type: recall_at_3
      value: 79.489
    - type: recall_at_5
      value: 85.161
  - task:
      type: PairClassification
    dataset:
      type: mteb/sprintduplicatequestions-pairclassification
      name: MTEB SprintDuplicateQuestions
      config: default
      split: test
      revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
    metrics:
    - type: cos_sim_accuracy
      value: 99.83564356435643
    - type: cos_sim_ap
      value: 96.10619363017767
    - type: cos_sim_f1
      value: 91.61225514816677
    - type: cos_sim_precision
      value: 92.02825428859738
    - type: cos_sim_recall
      value: 91.2
    - type: dot_accuracy
      value: 99.83564356435643
    - type: dot_ap
      value: 96.10619363017767
    - type: dot_f1
      value: 91.61225514816677
    - type: dot_precision
      value: 92.02825428859738
    - type: dot_recall
      value: 91.2
    - type: euclidean_accuracy
      value: 99.83564356435643
    - type: euclidean_ap
      value: 96.10619363017769
    - type: euclidean_f1
      value: 91.61225514816677
    - type: euclidean_precision
      value: 92.02825428859738
    - type: euclidean_recall
      value: 91.2
    - type: manhattan_accuracy
      value: 99.84158415841584
    - type: manhattan_ap
      value: 96.27527798658713
    - type: manhattan_f1
      value: 92.0
    - type: manhattan_precision
      value: 92.0
    - type: manhattan_recall
      value: 92.0
    - type: max_accuracy
      value: 99.84158415841584
    - type: max_ap
      value: 96.27527798658713
    - type: max_f1
      value: 92.0
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering
      name: MTEB StackExchangeClustering
      config: default
      split: test
      revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
    metrics:
    - type: v_measure
      value: 76.93753872885304
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering-p2p
      name: MTEB StackExchangeClusteringP2P
      config: default
      split: test
      revision: 815ca46b2622cec33ccafc3735d572c266efdb44
    metrics:
    - type: v_measure
      value: 46.044085080870126
  - task:
      type: Reranking
    dataset:
      type: mteb/stackoverflowdupquestions-reranking
      name: MTEB StackOverflowDupQuestions
      config: default
      split: test
      revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
    metrics:
    - type: map
      value: 55.885129730227256
    - type: mrr
      value: 56.95062494694848
  - task:
      type: Summarization
    dataset:
      type: mteb/summeval
      name: MTEB SummEval
      config: default
      split: test
      revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
    metrics:
    - type: cos_sim_pearson
      value: 31.202047940935508
    - type: cos_sim_spearman
      value: 30.984832035722228
    - type: dot_pearson
      value: 31.20204247226978
    - type: dot_spearman
      value: 30.984832035722228
  - task:
      type: Retrieval
    dataset:
      type: mteb/trec-covid
      name: MTEB TRECCOVID
      config: default
      split: test
      revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
    metrics:
    - type: map_at_1
      value: 0.245
    - type: map_at_10
      value: 2.249
    - type: map_at_100
      value: 14.85
    - type: map_at_1000
      value: 36.596000000000004
    - type: map_at_3
      value: 0.717
    - type: map_at_5
      value: 1.18
    - type: mrr_at_1
      value: 94.0
    - type: mrr_at_10
      value: 96.167
    - type: mrr_at_100
      value: 96.167
    - type: mrr_at_1000
      value: 96.167
    - type: mrr_at_3
      value: 95.667
    - type: mrr_at_5
      value: 96.167
    - type: ndcg_at_1
      value: 91.0
    - type: ndcg_at_10
      value: 87.09700000000001
    - type: ndcg_at_100
      value: 69.637
    - type: ndcg_at_1000
      value: 62.257
    - type: ndcg_at_3
      value: 90.235
    - type: ndcg_at_5
      value: 89.51400000000001
    - type: precision_at_1
      value: 94.0
    - type: precision_at_10
      value: 90.60000000000001
    - type: precision_at_100
      value: 71.38
    - type: precision_at_1000
      value: 27.400000000000002
    - type: precision_at_3
      value: 94.0
    - type: precision_at_5
      value: 93.2
    - type: recall_at_1
      value: 0.245
    - type: recall_at_10
      value: 2.366
    - type: recall_at_100
      value: 17.491
    - type: recall_at_1000
      value: 58.772999999999996
    - type: recall_at_3
      value: 0.7270000000000001
    - type: recall_at_5
      value: 1.221
  - task:
      type: Retrieval
    dataset:
      type: mteb/touche2020
      name: MTEB Touche2020
      config: default
      split: test
      revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
    metrics:
    - type: map_at_1
      value: 3.435
    - type: map_at_10
      value: 12.147
    - type: map_at_100
      value: 18.724
    - type: map_at_1000
      value: 20.426
    - type: map_at_3
      value: 6.526999999999999
    - type: map_at_5
      value: 9.198
    - type: mrr_at_1
      value: 48.980000000000004
    - type: mrr_at_10
      value: 62.970000000000006
    - type: mrr_at_100
      value: 63.288999999999994
    - type: mrr_at_1000
      value: 63.288999999999994
    - type: mrr_at_3
      value: 59.184000000000005
    - type: mrr_at_5
      value: 61.224000000000004
    - type: ndcg_at_1
      value: 46.939
    - type: ndcg_at_10
      value: 30.61
    - type: ndcg_at_100
      value: 41.683
    - type: ndcg_at_1000
      value: 53.144000000000005
    - type: ndcg_at_3
      value: 36.284
    - type: ndcg_at_5
      value: 34.345
    - type: precision_at_1
      value: 48.980000000000004
    - type: precision_at_10
      value: 26.122
    - type: precision_at_100
      value: 8.204
    - type: precision_at_1000
      value: 1.6019999999999999
    - type: precision_at_3
      value: 35.374
    - type: precision_at_5
      value: 32.653
    - type: recall_at_1
      value: 3.435
    - type: recall_at_10
      value: 18.953
    - type: recall_at_100
      value: 50.775000000000006
    - type: recall_at_1000
      value: 85.858
    - type: recall_at_3
      value: 7.813000000000001
    - type: recall_at_5
      value: 11.952
  - task:
      type: Classification
    dataset:
      type: mteb/toxic_conversations_50k
      name: MTEB ToxicConversationsClassification
      config: default
      split: test
      revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
    metrics:
    - type: accuracy
      value: 71.2938
    - type: ap
      value: 15.090139095602268
    - type: f1
      value: 55.23862650598296
  - task:
      type: Classification
    dataset:
      type: mteb/tweet_sentiment_extraction
      name: MTEB TweetSentimentExtractionClassification
      config: default
      split: test
      revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
    metrics:
    - type: accuracy
      value: 64.7623089983022
    - type: f1
      value: 65.07617131099336
  - task:
      type: Clustering
    dataset:
      type: mteb/twentynewsgroups-clustering
      name: MTEB TwentyNewsgroupsClustering
      config: default
      split: test
      revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
    metrics:
    - type: v_measure
      value: 57.2988222684939
  - task:
      type: PairClassification
    dataset:
      type: mteb/twittersemeval2015-pairclassification
      name: MTEB TwitterSemEval2015
      config: default
      split: test
      revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
    metrics:
    - type: cos_sim_accuracy
      value: 88.6034451928235
    - type: cos_sim_ap
      value: 81.51815279166863
    - type: cos_sim_f1
      value: 74.43794671864849
    - type: cos_sim_precision
      value: 73.34186939820742
    - type: cos_sim_recall
      value: 75.56728232189973
    - type: dot_accuracy
      value: 88.6034451928235
    - type: dot_ap
      value: 81.51816956866841
    - type: dot_f1
      value: 74.43794671864849
    - type: dot_precision
      value: 73.34186939820742
    - type: dot_recall
      value: 75.56728232189973
    - type: euclidean_accuracy
      value: 88.6034451928235
    - type: euclidean_ap
      value: 81.51817015121485
    - type: euclidean_f1
      value: 74.43794671864849
    - type: euclidean_precision
      value: 73.34186939820742
    - type: euclidean_recall
      value: 75.56728232189973
    - type: manhattan_accuracy
      value: 88.5736424867378
    - type: manhattan_ap
      value: 81.37610101292196
    - type: manhattan_f1
      value: 74.2504182215931
    - type: manhattan_precision
      value: 72.46922883697563
    - type: manhattan_recall
      value: 76.12137203166228
    - type: max_accuracy
      value: 88.6034451928235
    - type: max_ap
      value: 81.51817015121485
    - type: max_f1
      value: 74.43794671864849
  - task:
      type: PairClassification
    dataset:
      type: mteb/twitterurlcorpus-pairclassification
      name: MTEB TwitterURLCorpus
      config: default
      split: test
      revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
    metrics:
    - type: cos_sim_accuracy
      value: 89.53118329646446
    - type: cos_sim_ap
      value: 87.41972033060013
    - type: cos_sim_f1
      value: 79.4392523364486
    - type: cos_sim_precision
      value: 75.53457372951958
    - type: cos_sim_recall
      value: 83.7696335078534
    - type: dot_accuracy
      value: 89.53118329646446
    - type: dot_ap
      value: 87.41971646088945
    - type: dot_f1
      value: 79.4392523364486
    - type: dot_precision
      value: 75.53457372951958
    - type: dot_recall
      value: 83.7696335078534
    - type: euclidean_accuracy
      value: 89.53118329646446
    - type: euclidean_ap
      value: 87.41972415605997
    - type: euclidean_f1
      value: 79.4392523364486
    - type: euclidean_precision
      value: 75.53457372951958
    - type: euclidean_recall
      value: 83.7696335078534
    - type: manhattan_accuracy
      value: 89.5855163581325
    - type: manhattan_ap
      value: 87.51158697451964
    - type: manhattan_f1
      value: 79.54455087655883
    - type: manhattan_precision
      value: 74.96763643796416
    - type: manhattan_recall
      value: 84.71666153372344
    - type: max_accuracy
      value: 89.5855163581325
    - type: max_ap
      value: 87.51158697451964
    - type: max_f1
      value: 79.54455087655883
language:
  - en
license: cc-by-nc-4.0
---
<h1 align="center">Linq-AI-Research/Linq-Embed-Mistral</h1>

**Linq-Embed-Mistral**

Linq-Embed-Mistral has been developed by building upon the foundations of the [E5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) and [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) models. We focus on improving text retrieval using advanced data refinement methods, including sophisticated data crafting, data filtering, and negative mining guided by teacher models, which are highly tailored to each task, to improve the quality of the synthetic data generated by LLM. These methods are applied to both existing benchmark dataset and highly tailored synthetic dataset generated via LLMs. Our efforts primarily aim to create high-quality triplet datasets (query, positive example, negative example), significantly improving text retrieval performance.

Linq-Embed-Mistral performs well in the MTEB benchmarks (as of May 29, 2024). The model excels in retrieval tasks, ranking <ins>**`1st`**</ins> among all models listed on the MTEB leaderboard with a performance score of <ins>**`60.2`**</ins>. This outstanding performance underscores its superior capability in enhancing search precision and reliability. The model achieves an average score of <ins>**`68.2`**</ins> across 56 datasets in the MTEB benchmarks, making it the highest-ranking publicly accessible model and third overall. (Please note that [NV-Emb-v1](https://huggingface.co/nvidia/NV-Embed-v1) and [voyage-large-2-instruct](https://docs.voyageai.com/embeddings/), ranked 1st and 2nd on the leaderboard as of May 29, reported their performance without releasing their models.)


This project is for research purposes only. Third-party datasets may be subject to additional terms and conditions under their associated licenses. Please refer to specific papers for more details:

- [MTEB benchmark](https://arxiv.org/abs/2210.07316)
- [Mistral](https://arxiv.org/abs/2310.06825)
- [E5-mistral-7b-instruct](https://arxiv.org/pdf/2401.00368.pdf)

For more details, refer to [this blog post](https://getlinq.com/blog/linq-embed-mistral/) and [this report](https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral/blob/main/LinqAIResearch2024_Linq-Embed-Mistral.pdf).

## How to use

Here is an example of how to encode queries and passages from the Mr.TyDi training dataset, both with Sentence Transformers or Transformers directly.

### Sentence Transformers

```python
from sentence_transformers import SentenceTransformer

# Load the model
model = SentenceTransformer("Linq-AI-Research/Linq-Embed-Mistral")

# Each query must come with a one-sentence instruction that describes the task
task = 'Given a question, retrieve Wikipedia passages that answer the question'
prompt = f"Instruct: {task}\nQuery: "
queries = [
    "최초의 원자력 발전소는 무엇인가?",
    "Who invented Hangul?"
]
passages = [
    "현재 사용되는 핵분열 방식을 이용한 전력생산은 1948년 9월 미국 테네시주 오크리지에 설치된 X-10 흑연원자로에서 전구의 불을 밝히는 데 사용되면서 시작되었다. 그리고 1954년 6월에 구소련의 오브닌스크에 건설된 흑연감속 비등경수 압력관형 원자로를 사용한 오브닌스크 원자력 발전소가 시험적으로 전력생산을 시작하였고, 최초의 상업용 원자력 엉더이로를 사용한 영국 셀라필드 원자력 단지에 위치한 콜더 홀(Calder Hall) 원자력 발전소로, 1956년 10월 17일 상업 운전을 시작하였다.",
    "Hangul was personally created and promulgated by the fourth king of the Joseon dynasty, Sejong the Great.[1][2] Sejong's scholarly institute, the Hall of Worthies, is often credited with the work, and at least one of its scholars was heavily involved in its creation, but it appears to have also been a personal project of Sejong."
]

# Encode the queries and passages. We only use the prompt for the queries
query_embeddings = model.encode(queries, prompt=prompt)
passage_embeddings = model.encode(passages)

# Compute the (cosine) similarity scores
scores = model.similarity(query_embeddings, passage_embeddings) * 100
print(scores.tolist())
# [[73.72908782958984, 30.122787475585938], [29.15508460998535, 79.25375366210938]]
```

### Transformers

```python
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel

def last_token_pool(last_hidden_states: Tensor,
                 attention_mask: Tensor) -> Tensor:
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return last_hidden_states[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = last_hidden_states.shape[0]
        return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]

def get_detailed_instruct(task_description: str, query: str) -> str:
    return f'Instruct: {task_description}\nQuery: {query}'

# Each query must come with a one-sentence instruction that describes the task
task = 'Given a question, retrieve Wikipedia passages that answer the question'
queries = [
    get_detailed_instruct(task, '최초의 원자력 발전소는 무엇인가?'),
    get_detailed_instruct(task, 'Who invented Hangul?')
]
# No need to add instruction for retrieval documents
passages = [
    "현재 사용되는 핵분열 방식을 이용한 전력생산은 1948년 9월 미국 테네시주 오크리지에 설치된 X-10 흑연원자로에서 전구의 불을 밝히는 데 사용되면서 시작되었다. 그리고 1954년 6월에 구소련의 오브닌스크에 건설된 흑연감속 비등경수 압력관형 원자로를 사용한 오브닌스크 원자력 발전소가 시험적으로 전력생산을 시작하였고, 최초의 상업용 원자력 엉더이로를 사용한 영국 셀라필드 원자력 단지에 위치한 콜더 홀(Calder Hall) 원자력 발전소로, 1956년 10월 17일 상업 운전을 시작하였다.",
    "Hangul was personally created and promulgated by the fourth king of the Joseon dynasty, Sejong the Great.[1][2] Sejong's scholarly institute, the Hall of Worthies, is often credited with the work, and at least one of its scholars was heavily involved in its creation, but it appears to have also been a personal project of Sejong."
]

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('Linq-AI-Research/Linq-Embed-Mistral')
model = AutoModel.from_pretrained('Linq-AI-Research/Linq-Embed-Mistral')

max_length = 4096
input_texts = [*queries, *passages]
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors="pt")
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
# [[73.72909545898438, 30.122783660888672], [29.155078887939453, 79.25374603271484]]
```

### MTEB Benchmark Evaluation

Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB](https://arxiv.org/abs/2210.07316) benchmark.

## Evaluation Result

### MTEB (as of May 29, 2024)

|                                    Model Name                                    | Retrieval (15) | Average (56) |
| :------------------------------------------------------------------------------: | :------------: | :----------: |
| [Linq-Embed-Mistral](https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral) |      60.2      |     68.2     |
|             [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1)             |      59.4      |     69.3     |
| [SFR-Embedding-Mistral](https://huggingface.co/Salesforce/SFR-Embedding-Mistral) |      59.0      |     67.6     |
|       [voyage-large-2-instruct](https://docs.voyageai.com/docs/embeddings)       |      58.3      |     68.3     |
|               [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)               |      57.4      |     66.8     |
|       [voyage-lite-02-instruct](https://docs.voyageai.com/docs/embeddings)        |      56.6      |     67.1     |
|[gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct)|      56.2      |     67.3     |
| [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) |      56.9      |     66.6     |
|[google-gecko.text-embedding-preview-0409](https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings?hl=ko#latest_models)|      55.7      |     66.3     |
|[text-embedding-3-large](https://openai.com/index/new-embedding-models-and-api-updates/)|      55.4      |     64.6     |
|[Cohere-embed-english-v3.0](https://huggingface.co/Cohere/Cohere-embed-english-v3.0)|      55.0      |     64.5     |

# Linq Research Team.

- [Junseong Kim](https://huggingface.co/Junseong)
- [Seolhwa Lee](https://huggingface.co/Seolhwa)
- [Jihoon Kwon](https://huggingface.co/Mayfull)
- [Sangmo Gu](https://huggingface.co/karma-os)
- Yejin Kim
- Minkyung Cho
- [Jy-yong Sohn](https://itml.yonsei.ac.kr/professor)
- [Chanyeol Choi](https://www.linkedin.com/in/chanyeolchoi)

# Citation

```bibtex
@misc{LinqAIResearch2024,
  title={Linq-Embed-Mistral:Elevating Text Retrieval with Improved GPT Data Through Task-Specific Control and Quality Refinement},
  author={Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, Jy-yong Sohn, Chanyeol Choi},
  howpublished={Linq AI Research Blog},
  year={2024},
  url={https://getlinq.com/blog/linq-embed-mistral/}
}
```