Text Classification
Safetensors
llama
custom_code
URM-LLaMa-3.1-8B / modeling_custom.py
LxzGordon's picture
First commit
467d841
from transformers import LlamaForSequenceClassification,Cache
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
from typing import List, Optional, Tuple, Union
import torch
class Weights(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc=torch.nn.Sequential(
torch.nn.Linear(4096,4096,dtype=torch.float16),
torch.nn.SELU(),
torch.nn.Linear(4096,4096,dtype=torch.float16),
torch.nn.SELU(),
torch.nn.Linear(4096,5,dtype=torch.float16)
)
def forward(self,x):
return self.fc(x.to(torch.float16))
class LlamaForSequenceClassificationWithNormal_Weights(LlamaForSequenceClassification):
def __init__(self,config):
super().__init__(config)
self.weights=Weights()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states).detach()
weights=self.weights(hidden_states.detach())
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
pooled_weights= weights[torch.arange(batch_size, device=weights.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
return ((loss,) + output) if loss is not None else pooled_logits,pooled_weights
rews=pooled_logits.view(-1,5,2)[:,:,0].view(-1,5)
scores=(rews*pooled_weights).sum(dim=-1).view(-1,1)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=scores,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)