ManthanKulakarni commited on
Commit
f2484f2
1 Parent(s): c0342ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md CHANGED
@@ -1,3 +1,79 @@
1
  ---
2
  license: bsd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: bsd
3
+ datasets:
4
+ - ManthanKulakarni/Text2JQL_v2
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - LLaMa
10
+ - JQL
11
+ - Jira
12
+ - GGML
13
+ - GGML-q8_0
14
+ - GPU
15
+ - CPU
16
+ - 7B
17
+ - llama.cpp
18
+ - text-generation-webui
19
  ---
20
+
21
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp)
22
+
23
+ ## How to run in `llama.cpp`
24
+
25
+
26
+ ```
27
+ ./main -t 10 -ngl 32 -m ggml-model-q8_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write JQL(Jira query Language) for give input ### Input: stories assigned to manthan which are created in last 10 days with highest priority and label is set to release ### Response:"
28
+ ```
29
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
30
+
31
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
32
+
33
+ Tto have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
34
+
35
+ ## How to run in `text-generation-webui`
36
+
37
+ Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
38
+
39
+ ## How to run using `LangChain`
40
+
41
+ ##### Instalation on CPU
42
+ ```
43
+ pip install llama-cpp-python
44
+ ```
45
+ ##### Instalation on GPU
46
+ ```
47
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python
48
+ ```
49
+
50
+ ```python
51
+ from langchain.llms import LlamaCpp
52
+ from langchain import PromptTemplate, LLMChain
53
+ from langchain.callbacks.manager import CallbackManager
54
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
55
+
56
+ n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
57
+ n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
58
+ n_ctx=2048
59
+
60
+ callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
61
+
62
+ # Make sure the model path is correct for your system!
63
+ llm = LlamaCpp(
64
+ model_path="./ggml-model-q8_0.bin",
65
+ n_gpu_layers=n_gpu_layers, n_batch=n_batch,
66
+ callback_manager=callback_manager,
67
+ verbose=True,
68
+ n_ctx=n_ctx
69
+ )
70
+
71
+ llm("""### Instruction:
72
+ Write JQL(Jira query Language) for give input
73
+
74
+ ### Input:
75
+ stories assigned to manthan which are created in last 10 days with highest priority and label is set to release
76
+
77
+ ### Response:""")
78
+ ```
79
+ For more information refer [LangChain](https://python.langchain.com/docs/modules/model_io/models/llms/integrations/llamacpp)