|
#include <ATen/ATen.h> |
|
#include <ATen/AccumulateType.h> |
|
#include <ATen/cuda/CUDAContext.h> |
|
#include <ATen/cuda/Exceptions.h> |
|
|
|
|
|
|
|
#include <assert.h> |
|
|
|
#include "type_shim.h" |
|
#include "multi_tensor_apply.cuh" |
|
|
|
#define BLOCK_SIZE 512 |
|
#define ILP 4 |
|
|
|
template<typename x_t> |
|
struct L2NormFunctor |
|
{ |
|
__device__ __forceinline__ void operator()( |
|
int chunk_size, |
|
volatile int* noop_gmem, |
|
TensorListMetadata<1>& tl, |
|
float* output, |
|
float* output_per_tensor, |
|
bool per_tensor, |
|
int max_chunks_per_tensor) |
|
{ |
|
|
|
|
|
|
|
|
|
int tensor_loc = tl.block_to_tensor[blockIdx.x]; |
|
int chunk_idx = tl.block_to_chunk[blockIdx.x]; |
|
int n = tl.sizes[tensor_loc]; |
|
|
|
x_t* x = (x_t*)tl.addresses[0][tensor_loc]; |
|
x += chunk_idx*chunk_size; |
|
|
|
n -= chunk_idx*chunk_size; |
|
|
|
__shared__ float s_vals[512]; |
|
|
|
float vals[ILP]; |
|
for(int i = 0; i < ILP; i++) |
|
vals[i] = 0.f; |
|
|
|
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP) |
|
{ |
|
#pragma unroll |
|
for(int ii = 0; ii < ILP; ii++) |
|
{ |
|
int i = i_start + threadIdx.x + ii*blockDim.x; |
|
if(i < n && i < chunk_size) |
|
{ |
|
float next = static_cast<float>(x[i]); |
|
vals[ii] += next*next; |
|
} |
|
} |
|
} |
|
|
|
float val = 0.f; |
|
for(int i = 0; i < ILP; i++) |
|
val += vals[i]; |
|
|
|
float final = reduce_block_into_lanes(s_vals, val); |
|
|
|
if(threadIdx.x == 0) |
|
{ |
|
if(!isfinite(final)) |
|
*noop_gmem = 1; |
|
output[blockIdx.x] += final; |
|
if(per_tensor) |
|
output_per_tensor[(tl.start_tensor_this_launch + tensor_loc)*max_chunks_per_tensor + chunk_idx] = final; |
|
} |
|
} |
|
}; |
|
|
|
|
|
__global__ void cleanup( |
|
float* output, |
|
float* output_per_tensor, |
|
float* ret, |
|
float* ret_per_tensor, |
|
bool per_tensor, |
|
int max_chunks_per_tensor) |
|
{ |
|
__shared__ float vals[512]; |
|
|
|
if(blockIdx.x == 0) |
|
{ |
|
float val = 0; |
|
if(threadIdx.x < 320) |
|
val = output[threadIdx.x]; |
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
if(threadIdx.x == 0) |
|
*ret = sqrt(final); |
|
} |
|
|
|
if(per_tensor) |
|
{ |
|
float* output_this_tensor = output_per_tensor + blockIdx.x*max_chunks_per_tensor; |
|
|
|
float val = 0; |
|
for(int i = threadIdx.x; i < max_chunks_per_tensor; i += blockDim.x) |
|
val += output_this_tensor[i]; |
|
|
|
float final = reduce_block_into_lanes(vals, val); |
|
|
|
if(threadIdx.x == 0) |
|
ret_per_tensor[blockIdx.x] = sqrt(final); |
|
} |
|
} |
|
|
|
|
|
std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda( |
|
int chunk_size, |
|
at::Tensor noop_flag, |
|
std::vector<std::vector<at::Tensor>> tensor_lists, |
|
at::optional<bool> per_tensor_python) |
|
{ |
|
bool per_tensor = per_tensor_python.has_value() ? per_tensor_python.value() : false; |
|
|
|
auto float_options = tensor_lists[0][0].options().dtype(at::kFloat); |
|
auto output = at::zeros({320}, float_options); |
|
|
|
at::Tensor output_per_tensor; |
|
at::Tensor ret_per_tensor; |
|
|
|
int ntensors = tensor_lists[0].size(); |
|
int max_chunks_per_tensor = -1; |
|
|
|
if(per_tensor) |
|
{ |
|
for(int t = 0; t < ntensors; t++) |
|
{ |
|
int max_chunks_this_tensor = (tensor_lists[0][t].numel() + chunk_size - 1)/chunk_size; |
|
if(max_chunks_this_tensor > max_chunks_per_tensor) |
|
max_chunks_per_tensor = max_chunks_this_tensor; |
|
} |
|
output_per_tensor = at::zeros({ntensors*max_chunks_per_tensor}, float_options); |
|
ret_per_tensor = at::empty({ntensors}, float_options); |
|
} |
|
else |
|
{ |
|
ret_per_tensor = at::empty({0}, float_options); |
|
} |
|
|
|
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_l2norm_cuda", |
|
multi_tensor_apply<1>( |
|
BLOCK_SIZE, |
|
chunk_size, |
|
noop_flag, |
|
tensor_lists, |
|
L2NormFunctor<scalar_t_0>(), |
|
output.data<float>(), |
|
per_tensor ? output_per_tensor.data<float>() : nullptr, |
|
per_tensor, |
|
max_chunks_per_tensor);) |
|
|
|
AT_CUDA_CHECK(cudaGetLastError()); |
|
|
|
|
|
|
|
|
|
|
|
|
|
auto ret = at::empty({1}, output.options()); |
|
auto stream = at::cuda::getCurrentCUDAStream(); |
|
cleanup<<<per_tensor ? ntensors : 1, 512, 0, stream>>>( |
|
output.data<float>(), |
|
per_tensor ? output_per_tensor.data<float>() : nullptr, |
|
ret.data<float>(), |
|
per_tensor ? ret_per_tensor.data<float>() : nullptr, |
|
per_tensor, |
|
max_chunks_per_tensor); |
|
|
|
return std::tuple<at::Tensor, at::Tensor>(ret, ret_per_tensor); |
|
} |
|
|