MasonCrinr's picture
Upload 331 files
8026e91
import numpy as np
import torch as t
import torch.nn as nn
from jukebox.vqvae.encdec import Encoder, Decoder, assert_shape
from jukebox.vqvae.bottleneck import NoBottleneck, Bottleneck
from jukebox.utils.logger import average_metrics
from jukebox.utils.audio_utils import spectral_convergence, spectral_loss, multispectral_loss, audio_postprocess
def dont_update(params):
for param in params:
param.requires_grad = False
def update(params):
for param in params:
param.requires_grad = True
def calculate_strides(strides, downs):
return [stride ** down for stride, down in zip(strides, downs)]
def _loss_fn(loss_fn, x_target, x_pred, hps):
if loss_fn == 'l1':
return t.mean(t.abs(x_pred - x_target)) / hps.bandwidth['l1']
elif loss_fn == 'l2':
return t.mean((x_pred - x_target) ** 2) / hps.bandwidth['l2']
elif loss_fn == 'linf':
residual = ((x_pred - x_target) ** 2).reshape(x_target.shape[0], -1)
values, _ = t.topk(residual, hps.linf_k, dim=1)
return t.mean(values) / hps.bandwidth['l2']
elif loss_fn == 'lmix':
loss = 0.0
if hps.lmix_l1:
loss += hps.lmix_l1 * _loss_fn('l1', x_target, x_pred, hps)
if hps.lmix_l2:
loss += hps.lmix_l2 * _loss_fn('l2', x_target, x_pred, hps)
if hps.lmix_linf:
loss += hps.lmix_linf * _loss_fn('linf', x_target, x_pred, hps)
return loss
else:
assert False, f"Unknown loss_fn {loss_fn}"
class VQVAE(nn.Module):
def __init__(self, input_shape, levels, downs_t, strides_t,
emb_width, l_bins, mu, commit, spectral, multispectral,
multipliers=None, use_bottleneck=True, **block_kwargs):
super().__init__()
self.sample_length = input_shape[0]
x_shape, x_channels = input_shape[:-1], input_shape[-1]
self.x_shape = x_shape
self.downsamples = calculate_strides(strides_t, downs_t)
self.hop_lengths = np.cumprod(self.downsamples)
self.z_shapes = z_shapes = [(x_shape[0] // self.hop_lengths[level],) for level in range(levels)]
self.levels = levels
if multipliers is None:
self.multipliers = [1] * levels
else:
assert len(multipliers) == levels, "Invalid number of multipliers"
self.multipliers = multipliers
def _block_kwargs(level):
this_block_kwargs = dict(block_kwargs)
this_block_kwargs["width"] *= self.multipliers[level]
this_block_kwargs["depth"] *= self.multipliers[level]
return this_block_kwargs
encoder = lambda level: Encoder(x_channels, emb_width, level + 1,
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level))
decoder = lambda level: Decoder(x_channels, emb_width, level + 1,
downs_t[:level+1], strides_t[:level+1], **_block_kwargs(level))
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
for level in range(levels):
self.encoders.append(encoder(level))
self.decoders.append(decoder(level))
if use_bottleneck:
self.bottleneck = Bottleneck(l_bins, emb_width, mu, levels)
else:
self.bottleneck = NoBottleneck(levels)
self.downs_t = downs_t
self.strides_t = strides_t
self.l_bins = l_bins
self.commit = commit
self.spectral = spectral
self.multispectral = multispectral
def preprocess(self, x):
# x: NTC [-1,1] -> NCT [-1,1]
assert len(x.shape) == 3
x = x.permute(0,2,1).float()
return x
def postprocess(self, x):
# x: NTC [-1,1] <- NCT [-1,1]
x = x.permute(0,2,1)
return x
def _decode(self, zs, start_level=0, end_level=None):
# Decode
if end_level is None:
end_level = self.levels
assert len(zs) == end_level - start_level
xs_quantised = self.bottleneck.decode(zs, start_level=start_level, end_level=end_level)
assert len(xs_quantised) == end_level - start_level
# Use only lowest level
decoder, x_quantised = self.decoders[start_level], xs_quantised[0:1]
x_out = decoder(x_quantised, all_levels=False)
x_out = self.postprocess(x_out)
return x_out
def decode(self, zs, start_level=0, end_level=None, bs_chunks=1):
z_chunks = [t.chunk(z, bs_chunks, dim=0) for z in zs]
x_outs = []
for i in range(bs_chunks):
zs_i = [z_chunk[i] for z_chunk in z_chunks]
x_out = self._decode(zs_i, start_level=start_level, end_level=end_level)
x_outs.append(x_out)
return t.cat(x_outs, dim=0)
def _encode(self, x, start_level=0, end_level=None):
# Encode
if end_level is None:
end_level = self.levels
x_in = self.preprocess(x)
xs = []
for level in range(self.levels):
encoder = self.encoders[level]
x_out = encoder(x_in)
xs.append(x_out[-1])
zs = self.bottleneck.encode(xs)
return zs[start_level:end_level]
def encode(self, x, start_level=0, end_level=None, bs_chunks=1):
x_chunks = t.chunk(x, bs_chunks, dim=0)
zs_list = []
for x_i in x_chunks:
zs_i = self._encode(x_i, start_level=start_level, end_level=end_level)
zs_list.append(zs_i)
zs = [t.cat(zs_level_list, dim=0) for zs_level_list in zip(*zs_list)]
return zs
def sample(self, n_samples):
zs = [t.randint(0, self.l_bins, size=(n_samples, *z_shape), device='cuda') for z_shape in self.z_shapes]
return self.decode(zs)
def forward(self, x, hps, loss_fn='l1'):
metrics = {}
N = x.shape[0]
# Encode/Decode
x_in = self.preprocess(x)
xs = []
for level in range(self.levels):
encoder = self.encoders[level]
x_out = encoder(x_in)
xs.append(x_out[-1])
zs, xs_quantised, commit_losses, quantiser_metrics = self.bottleneck(xs)
x_outs = []
for level in range(self.levels):
decoder = self.decoders[level]
x_out = decoder(xs_quantised[level:level+1], all_levels=False)
assert_shape(x_out, x_in.shape)
x_outs.append(x_out)
# Loss
def _spectral_loss(x_target, x_out, hps):
if hps.use_nonrelative_specloss:
sl = spectral_loss(x_target, x_out, hps) / hps.bandwidth['spec']
else:
sl = spectral_convergence(x_target, x_out, hps)
sl = t.mean(sl)
return sl
def _multispectral_loss(x_target, x_out, hps):
sl = multispectral_loss(x_target, x_out, hps) / hps.bandwidth['spec']
sl = t.mean(sl)
return sl
recons_loss = t.zeros(()).to(x.device)
spec_loss = t.zeros(()).to(x.device)
multispec_loss = t.zeros(()).to(x.device)
x_target = audio_postprocess(x.float(), hps)
for level in reversed(range(self.levels)):
x_out = self.postprocess(x_outs[level])
x_out = audio_postprocess(x_out, hps)
this_recons_loss = _loss_fn(loss_fn, x_target, x_out, hps)
this_spec_loss = _spectral_loss(x_target, x_out, hps)
this_multispec_loss = _multispectral_loss(x_target, x_out, hps)
metrics[f'recons_loss_l{level + 1}'] = this_recons_loss
metrics[f'spectral_loss_l{level + 1}'] = this_spec_loss
metrics[f'multispectral_loss_l{level + 1}'] = this_multispec_loss
recons_loss += this_recons_loss
spec_loss += this_spec_loss
multispec_loss += this_multispec_loss
commit_loss = sum(commit_losses)
loss = recons_loss + self.spectral * spec_loss + self.multispectral * multispec_loss + self.commit * commit_loss
with t.no_grad():
sc = t.mean(spectral_convergence(x_target, x_out, hps))
l2_loss = _loss_fn("l2", x_target, x_out, hps)
l1_loss = _loss_fn("l1", x_target, x_out, hps)
linf_loss = _loss_fn("linf", x_target, x_out, hps)
quantiser_metrics = average_metrics(quantiser_metrics)
metrics.update(dict(
recons_loss=recons_loss,
spectral_loss=spec_loss,
multispectral_loss=multispec_loss,
spectral_convergence=sc,
l2_loss=l2_loss,
l1_loss=l1_loss,
linf_loss=linf_loss,
commit_loss=commit_loss,
**quantiser_metrics))
for key, val in metrics.items():
metrics[key] = val.detach()
return x_out, loss, metrics