vaibhavad commited on
Commit
44f5bca
1 Parent(s): ff93667

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2495 -0
README.md CHANGED
@@ -23,6 +23,2501 @@ tags:
23
  - fever
24
  - hotpot_qa
25
  - mteb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ---
27
 
28
  # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
 
23
  - fever
24
  - hotpot_qa
25
  - mteb
26
+ model-index:
27
+ - name: LLM2Vec-Sheared-LLaMA-supervised
28
+ results:
29
+ - task:
30
+ type: Classification
31
+ dataset:
32
+ type: mteb/amazon_counterfactual
33
+ name: MTEB AmazonCounterfactualClassification (en)
34
+ config: en
35
+ split: test
36
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
37
+ metrics:
38
+ - type: accuracy
39
+ value: 77.41791044776119
40
+ - type: ap
41
+ value: 41.45458580415683
42
+ - type: f1
43
+ value: 71.63305447032735
44
+ - task:
45
+ type: Classification
46
+ dataset:
47
+ type: mteb/amazon_polarity
48
+ name: MTEB AmazonPolarityClassification
49
+ config: default
50
+ split: test
51
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
52
+ metrics:
53
+ - type: accuracy
54
+ value: 82.0527
55
+ - type: ap
56
+ value: 77.3222852456055
57
+ - type: f1
58
+ value: 81.97981459031165
59
+ - task:
60
+ type: Classification
61
+ dataset:
62
+ type: mteb/amazon_reviews_multi
63
+ name: MTEB AmazonReviewsClassification (en)
64
+ config: en
65
+ split: test
66
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
67
+ metrics:
68
+ - type: accuracy
69
+ value: 40.806000000000004
70
+ - type: f1
71
+ value: 40.3299129176701
72
+ - task:
73
+ type: Retrieval
74
+ dataset:
75
+ type: arguana
76
+ name: MTEB ArguAna
77
+ config: default
78
+ split: test
79
+ revision: None
80
+ metrics:
81
+ - type: map_at_1
82
+ value: 25.391000000000002
83
+ - type: map_at_10
84
+ value: 41.919000000000004
85
+ - type: map_at_100
86
+ value: 42.846000000000004
87
+ - type: map_at_1000
88
+ value: 42.851
89
+ - type: map_at_3
90
+ value: 36.260999999999996
91
+ - type: map_at_5
92
+ value: 39.528999999999996
93
+ - type: mrr_at_1
94
+ value: 26.245
95
+ - type: mrr_at_10
96
+ value: 42.215
97
+ - type: mrr_at_100
98
+ value: 43.135
99
+ - type: mrr_at_1000
100
+ value: 43.14
101
+ - type: mrr_at_3
102
+ value: 36.546
103
+ - type: mrr_at_5
104
+ value: 39.782000000000004
105
+ - type: ndcg_at_1
106
+ value: 25.391000000000002
107
+ - type: ndcg_at_10
108
+ value: 51.663000000000004
109
+ - type: ndcg_at_100
110
+ value: 55.419
111
+ - type: ndcg_at_1000
112
+ value: 55.517
113
+ - type: ndcg_at_3
114
+ value: 39.96
115
+ - type: ndcg_at_5
116
+ value: 45.909
117
+ - type: precision_at_1
118
+ value: 25.391000000000002
119
+ - type: precision_at_10
120
+ value: 8.3
121
+ - type: precision_at_100
122
+ value: 0.989
123
+ - type: precision_at_1000
124
+ value: 0.1
125
+ - type: precision_at_3
126
+ value: 16.904
127
+ - type: precision_at_5
128
+ value: 13.058
129
+ - type: recall_at_1
130
+ value: 25.391000000000002
131
+ - type: recall_at_10
132
+ value: 83.001
133
+ - type: recall_at_100
134
+ value: 98.933
135
+ - type: recall_at_1000
136
+ value: 99.644
137
+ - type: recall_at_3
138
+ value: 50.711
139
+ - type: recall_at_5
140
+ value: 65.292
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ type: mteb/arxiv-clustering-p2p
145
+ name: MTEB ArxivClusteringP2P
146
+ config: default
147
+ split: test
148
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
149
+ metrics:
150
+ - type: v_measure
151
+ value: 43.472186058302285
152
+ - task:
153
+ type: Clustering
154
+ dataset:
155
+ type: mteb/arxiv-clustering-s2s
156
+ name: MTEB ArxivClusteringS2S
157
+ config: default
158
+ split: test
159
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
160
+ metrics:
161
+ - type: v_measure
162
+ value: 39.846039374129546
163
+ - task:
164
+ type: Reranking
165
+ dataset:
166
+ type: mteb/askubuntudupquestions-reranking
167
+ name: MTEB AskUbuntuDupQuestions
168
+ config: default
169
+ split: test
170
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
171
+ metrics:
172
+ - type: map
173
+ value: 60.713811638804174
174
+ - type: mrr
175
+ value: 73.38906476718111
176
+ - task:
177
+ type: STS
178
+ dataset:
179
+ type: mteb/biosses-sts
180
+ name: MTEB BIOSSES
181
+ config: default
182
+ split: test
183
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
184
+ metrics:
185
+ - type: cos_sim_spearman
186
+ value: 85.88328221005123
187
+ - task:
188
+ type: Classification
189
+ dataset:
190
+ type: mteb/banking77
191
+ name: MTEB Banking77Classification
192
+ config: default
193
+ split: test
194
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
195
+ metrics:
196
+ - type: accuracy
197
+ value: 86.00974025974025
198
+ - type: f1
199
+ value: 85.97349359388288
200
+ - task:
201
+ type: Clustering
202
+ dataset:
203
+ type: mteb/biorxiv-clustering-p2p
204
+ name: MTEB BiorxivClusteringP2P
205
+ config: default
206
+ split: test
207
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
208
+ metrics:
209
+ - type: v_measure
210
+ value: 37.102075665637685
211
+ - task:
212
+ type: Clustering
213
+ dataset:
214
+ type: mteb/biorxiv-clustering-s2s
215
+ name: MTEB BiorxivClusteringS2S
216
+ config: default
217
+ split: test
218
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
219
+ metrics:
220
+ - type: v_measure
221
+ value: 34.27583239919031
222
+ - task:
223
+ type: Retrieval
224
+ dataset:
225
+ type: cqadupstack/android
226
+ name: MTEB CQADupstackAndroidRetrieval
227
+ config: default
228
+ split: test
229
+ revision: None
230
+ metrics:
231
+ - type: map_at_1
232
+ value: 33.043
233
+ - type: map_at_10
234
+ value: 44.515
235
+ - type: map_at_100
236
+ value: 45.967999999999996
237
+ - type: map_at_1000
238
+ value: 46.098
239
+ - type: map_at_3
240
+ value: 40.285
241
+ - type: map_at_5
242
+ value: 42.841
243
+ - type: mrr_at_1
244
+ value: 40.2
245
+ - type: mrr_at_10
246
+ value: 50.233000000000004
247
+ - type: mrr_at_100
248
+ value: 50.938
249
+ - type: mrr_at_1000
250
+ value: 50.978
251
+ - type: mrr_at_3
252
+ value: 47.353
253
+ - type: mrr_at_5
254
+ value: 49.034
255
+ - type: ndcg_at_1
256
+ value: 40.2
257
+ - type: ndcg_at_10
258
+ value: 51.096
259
+ - type: ndcg_at_100
260
+ value: 56.267999999999994
261
+ - type: ndcg_at_1000
262
+ value: 58.092999999999996
263
+ - type: ndcg_at_3
264
+ value: 45.09
265
+ - type: ndcg_at_5
266
+ value: 48.198
267
+ - type: precision_at_1
268
+ value: 40.2
269
+ - type: precision_at_10
270
+ value: 9.843
271
+ - type: precision_at_100
272
+ value: 1.546
273
+ - type: precision_at_1000
274
+ value: 0.20400000000000001
275
+ - type: precision_at_3
276
+ value: 21.507
277
+ - type: precision_at_5
278
+ value: 15.966
279
+ - type: recall_at_1
280
+ value: 33.043
281
+ - type: recall_at_10
282
+ value: 63.871
283
+ - type: recall_at_100
284
+ value: 85.527
285
+ - type: recall_at_1000
286
+ value: 96.936
287
+ - type: recall_at_3
288
+ value: 46.859
289
+ - type: recall_at_5
290
+ value: 55.116
291
+ - task:
292
+ type: Retrieval
293
+ dataset:
294
+ type: cqadupstack/english
295
+ name: MTEB CQADupstackEnglishRetrieval
296
+ config: default
297
+ split: test
298
+ revision: None
299
+ metrics:
300
+ - type: map_at_1
301
+ value: 31.924000000000003
302
+ - type: map_at_10
303
+ value: 42.298
304
+ - type: map_at_100
305
+ value: 43.589
306
+ - type: map_at_1000
307
+ value: 43.724000000000004
308
+ - type: map_at_3
309
+ value: 39.739999999999995
310
+ - type: map_at_5
311
+ value: 41.131
312
+ - type: mrr_at_1
313
+ value: 40.064
314
+ - type: mrr_at_10
315
+ value: 48.4
316
+ - type: mrr_at_100
317
+ value: 49.07
318
+ - type: mrr_at_1000
319
+ value: 49.113
320
+ - type: mrr_at_3
321
+ value: 46.635
322
+ - type: mrr_at_5
323
+ value: 47.549
324
+ - type: ndcg_at_1
325
+ value: 40.064
326
+ - type: ndcg_at_10
327
+ value: 47.686
328
+ - type: ndcg_at_100
329
+ value: 52.054
330
+ - type: ndcg_at_1000
331
+ value: 54.151
332
+ - type: ndcg_at_3
333
+ value: 44.57
334
+ - type: ndcg_at_5
335
+ value: 45.727000000000004
336
+ - type: precision_at_1
337
+ value: 40.064
338
+ - type: precision_at_10
339
+ value: 8.770999999999999
340
+ - type: precision_at_100
341
+ value: 1.422
342
+ - type: precision_at_1000
343
+ value: 0.19
344
+ - type: precision_at_3
345
+ value: 21.741
346
+ - type: precision_at_5
347
+ value: 14.790000000000001
348
+ - type: recall_at_1
349
+ value: 31.924000000000003
350
+ - type: recall_at_10
351
+ value: 56.603
352
+ - type: recall_at_100
353
+ value: 74.82900000000001
354
+ - type: recall_at_1000
355
+ value: 88.176
356
+ - type: recall_at_3
357
+ value: 46.11
358
+ - type: recall_at_5
359
+ value: 50.273999999999994
360
+ - task:
361
+ type: Retrieval
362
+ dataset:
363
+ type: cqadupstack/gaming
364
+ name: MTEB CQADupstackGamingRetrieval
365
+ config: default
366
+ split: test
367
+ revision: None
368
+ metrics:
369
+ - type: map_at_1
370
+ value: 40.721000000000004
371
+ - type: map_at_10
372
+ value: 53.053
373
+ - type: map_at_100
374
+ value: 54.103
375
+ - type: map_at_1000
376
+ value: 54.157999999999994
377
+ - type: map_at_3
378
+ value: 49.854
379
+ - type: map_at_5
380
+ value: 51.547
381
+ - type: mrr_at_1
382
+ value: 46.833999999999996
383
+ - type: mrr_at_10
384
+ value: 56.61000000000001
385
+ - type: mrr_at_100
386
+ value: 57.286
387
+ - type: mrr_at_1000
388
+ value: 57.312
389
+ - type: mrr_at_3
390
+ value: 54.17999999999999
391
+ - type: mrr_at_5
392
+ value: 55.503
393
+ - type: ndcg_at_1
394
+ value: 46.833999999999996
395
+ - type: ndcg_at_10
396
+ value: 58.928000000000004
397
+ - type: ndcg_at_100
398
+ value: 62.939
399
+ - type: ndcg_at_1000
400
+ value: 63.970000000000006
401
+ - type: ndcg_at_3
402
+ value: 53.599
403
+ - type: ndcg_at_5
404
+ value: 55.96600000000001
405
+ - type: precision_at_1
406
+ value: 46.833999999999996
407
+ - type: precision_at_10
408
+ value: 9.48
409
+ - type: precision_at_100
410
+ value: 1.2349999999999999
411
+ - type: precision_at_1000
412
+ value: 0.13699999999999998
413
+ - type: precision_at_3
414
+ value: 24.032999999999998
415
+ - type: precision_at_5
416
+ value: 16.213
417
+ - type: recall_at_1
418
+ value: 40.721000000000004
419
+ - type: recall_at_10
420
+ value: 72.653
421
+ - type: recall_at_100
422
+ value: 89.91900000000001
423
+ - type: recall_at_1000
424
+ value: 97.092
425
+ - type: recall_at_3
426
+ value: 58.135999999999996
427
+ - type: recall_at_5
428
+ value: 64.156
429
+ - task:
430
+ type: Retrieval
431
+ dataset:
432
+ type: cqadupstack/gis
433
+ name: MTEB CQADupstackGisRetrieval
434
+ config: default
435
+ split: test
436
+ revision: None
437
+ metrics:
438
+ - type: map_at_1
439
+ value: 24.938
440
+ - type: map_at_10
441
+ value: 34.027
442
+ - type: map_at_100
443
+ value: 34.999
444
+ - type: map_at_1000
445
+ value: 35.083
446
+ - type: map_at_3
447
+ value: 31.154
448
+ - type: map_at_5
449
+ value: 32.767
450
+ - type: mrr_at_1
451
+ value: 27.006000000000004
452
+ - type: mrr_at_10
453
+ value: 36.192
454
+ - type: mrr_at_100
455
+ value: 36.989
456
+ - type: mrr_at_1000
457
+ value: 37.053999999999995
458
+ - type: mrr_at_3
459
+ value: 33.503
460
+ - type: mrr_at_5
461
+ value: 34.977000000000004
462
+ - type: ndcg_at_1
463
+ value: 27.006000000000004
464
+ - type: ndcg_at_10
465
+ value: 39.297
466
+ - type: ndcg_at_100
467
+ value: 44.078
468
+ - type: ndcg_at_1000
469
+ value: 46.162
470
+ - type: ndcg_at_3
471
+ value: 33.695
472
+ - type: ndcg_at_5
473
+ value: 36.401
474
+ - type: precision_at_1
475
+ value: 27.006000000000004
476
+ - type: precision_at_10
477
+ value: 6.181
478
+ - type: precision_at_100
479
+ value: 0.905
480
+ - type: precision_at_1000
481
+ value: 0.11199999999999999
482
+ - type: precision_at_3
483
+ value: 14.426
484
+ - type: precision_at_5
485
+ value: 10.215
486
+ - type: recall_at_1
487
+ value: 24.938
488
+ - type: recall_at_10
489
+ value: 53.433
490
+ - type: recall_at_100
491
+ value: 75.558
492
+ - type: recall_at_1000
493
+ value: 91.096
494
+ - type: recall_at_3
495
+ value: 38.421
496
+ - type: recall_at_5
497
+ value: 44.906
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: cqadupstack/mathematica
502
+ name: MTEB CQADupstackMathematicaRetrieval
503
+ config: default
504
+ split: test
505
+ revision: None
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 15.565999999999999
509
+ - type: map_at_10
510
+ value: 23.419999999999998
511
+ - type: map_at_100
512
+ value: 24.678
513
+ - type: map_at_1000
514
+ value: 24.801000000000002
515
+ - type: map_at_3
516
+ value: 20.465
517
+ - type: map_at_5
518
+ value: 21.979000000000003
519
+ - type: mrr_at_1
520
+ value: 19.652
521
+ - type: mrr_at_10
522
+ value: 27.929
523
+ - type: mrr_at_100
524
+ value: 28.92
525
+ - type: mrr_at_1000
526
+ value: 28.991
527
+ - type: mrr_at_3
528
+ value: 25.249
529
+ - type: mrr_at_5
530
+ value: 26.66
531
+ - type: ndcg_at_1
532
+ value: 19.652
533
+ - type: ndcg_at_10
534
+ value: 28.869
535
+ - type: ndcg_at_100
536
+ value: 34.675
537
+ - type: ndcg_at_1000
538
+ value: 37.577
539
+ - type: ndcg_at_3
540
+ value: 23.535
541
+ - type: ndcg_at_5
542
+ value: 25.807999999999996
543
+ - type: precision_at_1
544
+ value: 19.652
545
+ - type: precision_at_10
546
+ value: 5.659
547
+ - type: precision_at_100
548
+ value: 0.979
549
+ - type: precision_at_1000
550
+ value: 0.13699999999999998
551
+ - type: precision_at_3
552
+ value: 11.401
553
+ - type: precision_at_5
554
+ value: 8.581999999999999
555
+ - type: recall_at_1
556
+ value: 15.565999999999999
557
+ - type: recall_at_10
558
+ value: 41.163
559
+ - type: recall_at_100
560
+ value: 66.405
561
+ - type: recall_at_1000
562
+ value: 87.071
563
+ - type: recall_at_3
564
+ value: 26.478
565
+ - type: recall_at_5
566
+ value: 32.217
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: cqadupstack/physics
571
+ name: MTEB CQADupstackPhysicsRetrieval
572
+ config: default
573
+ split: test
574
+ revision: None
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 30.834
578
+ - type: map_at_10
579
+ value: 41.49
580
+ - type: map_at_100
581
+ value: 42.897999999999996
582
+ - type: map_at_1000
583
+ value: 43.004
584
+ - type: map_at_3
585
+ value: 38.151
586
+ - type: map_at_5
587
+ value: 40.157
588
+ - type: mrr_at_1
589
+ value: 38.306000000000004
590
+ - type: mrr_at_10
591
+ value: 47.371
592
+ - type: mrr_at_100
593
+ value: 48.265
594
+ - type: mrr_at_1000
595
+ value: 48.304
596
+ - type: mrr_at_3
597
+ value: 44.915
598
+ - type: mrr_at_5
599
+ value: 46.516999999999996
600
+ - type: ndcg_at_1
601
+ value: 38.306000000000004
602
+ - type: ndcg_at_10
603
+ value: 47.394999999999996
604
+ - type: ndcg_at_100
605
+ value: 53.086999999999996
606
+ - type: ndcg_at_1000
607
+ value: 54.94799999999999
608
+ - type: ndcg_at_3
609
+ value: 42.384
610
+ - type: ndcg_at_5
611
+ value: 45.055
612
+ - type: precision_at_1
613
+ value: 38.306000000000004
614
+ - type: precision_at_10
615
+ value: 8.624
616
+ - type: precision_at_100
617
+ value: 1.325
618
+ - type: precision_at_1000
619
+ value: 0.165
620
+ - type: precision_at_3
621
+ value: 20.18
622
+ - type: precision_at_5
623
+ value: 14.418000000000001
624
+ - type: recall_at_1
625
+ value: 30.834
626
+ - type: recall_at_10
627
+ value: 58.977000000000004
628
+ - type: recall_at_100
629
+ value: 82.78
630
+ - type: recall_at_1000
631
+ value: 94.825
632
+ - type: recall_at_3
633
+ value: 44.954
634
+ - type: recall_at_5
635
+ value: 51.925
636
+ - task:
637
+ type: Retrieval
638
+ dataset:
639
+ type: cqadupstack/programmers
640
+ name: MTEB CQADupstackProgrammersRetrieval
641
+ config: default
642
+ split: test
643
+ revision: None
644
+ metrics:
645
+ - type: map_at_1
646
+ value: 28.549000000000003
647
+ - type: map_at_10
648
+ value: 38.796
649
+ - type: map_at_100
650
+ value: 40.085
651
+ - type: map_at_1000
652
+ value: 40.198
653
+ - type: map_at_3
654
+ value: 35.412
655
+ - type: map_at_5
656
+ value: 37.116
657
+ - type: mrr_at_1
658
+ value: 35.388
659
+ - type: mrr_at_10
660
+ value: 44.626
661
+ - type: mrr_at_100
662
+ value: 45.445
663
+ - type: mrr_at_1000
664
+ value: 45.491
665
+ - type: mrr_at_3
666
+ value: 41.952
667
+ - type: mrr_at_5
668
+ value: 43.368
669
+ - type: ndcg_at_1
670
+ value: 35.388
671
+ - type: ndcg_at_10
672
+ value: 44.894
673
+ - type: ndcg_at_100
674
+ value: 50.166999999999994
675
+ - type: ndcg_at_1000
676
+ value: 52.308
677
+ - type: ndcg_at_3
678
+ value: 39.478
679
+ - type: ndcg_at_5
680
+ value: 41.608000000000004
681
+ - type: precision_at_1
682
+ value: 35.388
683
+ - type: precision_at_10
684
+ value: 8.322000000000001
685
+ - type: precision_at_100
686
+ value: 1.2670000000000001
687
+ - type: precision_at_1000
688
+ value: 0.164
689
+ - type: precision_at_3
690
+ value: 18.836
691
+ - type: precision_at_5
692
+ value: 13.333
693
+ - type: recall_at_1
694
+ value: 28.549000000000003
695
+ - type: recall_at_10
696
+ value: 57.229
697
+ - type: recall_at_100
698
+ value: 79.541
699
+ - type: recall_at_1000
700
+ value: 93.887
701
+ - type: recall_at_3
702
+ value: 42.056
703
+ - type: recall_at_5
704
+ value: 47.705999999999996
705
+ - task:
706
+ type: Retrieval
707
+ dataset:
708
+ type: mteb/cqadupstack
709
+ name: MTEB CQADupstackRetrieval
710
+ config: default
711
+ split: test
712
+ revision: None
713
+ metrics:
714
+ - type: map_at_1
715
+ value: 26.897333333333336
716
+ - type: map_at_10
717
+ value: 36.28758333333334
718
+ - type: map_at_100
719
+ value: 37.480083333333326
720
+ - type: map_at_1000
721
+ value: 37.59683333333333
722
+ - type: map_at_3
723
+ value: 33.3485
724
+ - type: map_at_5
725
+ value: 34.98283333333334
726
+ - type: mrr_at_1
727
+ value: 31.98916666666667
728
+ - type: mrr_at_10
729
+ value: 40.61116666666666
730
+ - type: mrr_at_100
731
+ value: 41.42133333333333
732
+ - type: mrr_at_1000
733
+ value: 41.476333333333336
734
+ - type: mrr_at_3
735
+ value: 38.19366666666667
736
+ - type: mrr_at_5
737
+ value: 39.53125
738
+ - type: ndcg_at_1
739
+ value: 31.98916666666667
740
+ - type: ndcg_at_10
741
+ value: 41.73475
742
+ - type: ndcg_at_100
743
+ value: 46.72291666666666
744
+ - type: ndcg_at_1000
745
+ value: 48.94916666666666
746
+ - type: ndcg_at_3
747
+ value: 36.883833333333335
748
+ - type: ndcg_at_5
749
+ value: 39.114
750
+ - type: precision_at_1
751
+ value: 31.98916666666667
752
+ - type: precision_at_10
753
+ value: 7.364083333333335
754
+ - type: precision_at_100
755
+ value: 1.1604166666666667
756
+ - type: precision_at_1000
757
+ value: 0.15433333333333335
758
+ - type: precision_at_3
759
+ value: 17.067500000000003
760
+ - type: precision_at_5
761
+ value: 12.091916666666666
762
+ - type: recall_at_1
763
+ value: 26.897333333333336
764
+ - type: recall_at_10
765
+ value: 53.485749999999996
766
+ - type: recall_at_100
767
+ value: 75.38716666666666
768
+ - type: recall_at_1000
769
+ value: 90.75841666666666
770
+ - type: recall_at_3
771
+ value: 39.86725
772
+ - type: recall_at_5
773
+ value: 45.683416666666666
774
+ - task:
775
+ type: Retrieval
776
+ dataset:
777
+ type: cqadupstack/stats
778
+ name: MTEB CQADupstackStatsRetrieval
779
+ config: default
780
+ split: test
781
+ revision: None
782
+ metrics:
783
+ - type: map_at_1
784
+ value: 23.544
785
+ - type: map_at_10
786
+ value: 30.85
787
+ - type: map_at_100
788
+ value: 31.674000000000003
789
+ - type: map_at_1000
790
+ value: 31.778000000000002
791
+ - type: map_at_3
792
+ value: 28.451999999999998
793
+ - type: map_at_5
794
+ value: 29.797
795
+ - type: mrr_at_1
796
+ value: 26.687
797
+ - type: mrr_at_10
798
+ value: 33.725
799
+ - type: mrr_at_100
800
+ value: 34.439
801
+ - type: mrr_at_1000
802
+ value: 34.512
803
+ - type: mrr_at_3
804
+ value: 31.493
805
+ - type: mrr_at_5
806
+ value: 32.735
807
+ - type: ndcg_at_1
808
+ value: 26.687
809
+ - type: ndcg_at_10
810
+ value: 35.207
811
+ - type: ndcg_at_100
812
+ value: 39.406
813
+ - type: ndcg_at_1000
814
+ value: 42.021
815
+ - type: ndcg_at_3
816
+ value: 30.842000000000002
817
+ - type: ndcg_at_5
818
+ value: 32.882
819
+ - type: precision_at_1
820
+ value: 26.687
821
+ - type: precision_at_10
822
+ value: 5.66
823
+ - type: precision_at_100
824
+ value: 0.836
825
+ - type: precision_at_1000
826
+ value: 0.11299999999999999
827
+ - type: precision_at_3
828
+ value: 13.395000000000001
829
+ - type: precision_at_5
830
+ value: 9.386999999999999
831
+ - type: recall_at_1
832
+ value: 23.544
833
+ - type: recall_at_10
834
+ value: 45.769
835
+ - type: recall_at_100
836
+ value: 65.33200000000001
837
+ - type: recall_at_1000
838
+ value: 84.82499999999999
839
+ - type: recall_at_3
840
+ value: 33.665
841
+ - type: recall_at_5
842
+ value: 38.795
843
+ - task:
844
+ type: Retrieval
845
+ dataset:
846
+ type: cqadupstack/tex
847
+ name: MTEB CQADupstackTexRetrieval
848
+ config: default
849
+ split: test
850
+ revision: None
851
+ metrics:
852
+ - type: map_at_1
853
+ value: 16.524
854
+ - type: map_at_10
855
+ value: 23.65
856
+ - type: map_at_100
857
+ value: 24.654999999999998
858
+ - type: map_at_1000
859
+ value: 24.786
860
+ - type: map_at_3
861
+ value: 21.441
862
+ - type: map_at_5
863
+ value: 22.664
864
+ - type: mrr_at_1
865
+ value: 20.372
866
+ - type: mrr_at_10
867
+ value: 27.548000000000002
868
+ - type: mrr_at_100
869
+ value: 28.37
870
+ - type: mrr_at_1000
871
+ value: 28.449
872
+ - type: mrr_at_3
873
+ value: 25.291999999999998
874
+ - type: mrr_at_5
875
+ value: 26.596999999999998
876
+ - type: ndcg_at_1
877
+ value: 20.372
878
+ - type: ndcg_at_10
879
+ value: 28.194000000000003
880
+ - type: ndcg_at_100
881
+ value: 32.955
882
+ - type: ndcg_at_1000
883
+ value: 35.985
884
+ - type: ndcg_at_3
885
+ value: 24.212
886
+ - type: ndcg_at_5
887
+ value: 26.051000000000002
888
+ - type: precision_at_1
889
+ value: 20.372
890
+ - type: precision_at_10
891
+ value: 5.237
892
+ - type: precision_at_100
893
+ value: 0.8909999999999999
894
+ - type: precision_at_1000
895
+ value: 0.132
896
+ - type: precision_at_3
897
+ value: 11.643
898
+ - type: precision_at_5
899
+ value: 8.424
900
+ - type: recall_at_1
901
+ value: 16.524
902
+ - type: recall_at_10
903
+ value: 37.969
904
+ - type: recall_at_100
905
+ value: 59.48
906
+ - type: recall_at_1000
907
+ value: 81.04599999999999
908
+ - type: recall_at_3
909
+ value: 26.647
910
+ - type: recall_at_5
911
+ value: 31.558999999999997
912
+ - task:
913
+ type: Retrieval
914
+ dataset:
915
+ type: cqadupstack/unix
916
+ name: MTEB CQADupstackUnixRetrieval
917
+ config: default
918
+ split: test
919
+ revision: None
920
+ metrics:
921
+ - type: map_at_1
922
+ value: 26.273000000000003
923
+ - type: map_at_10
924
+ value: 35.176
925
+ - type: map_at_100
926
+ value: 36.367
927
+ - type: map_at_1000
928
+ value: 36.473
929
+ - type: map_at_3
930
+ value: 32.583
931
+ - type: map_at_5
932
+ value: 33.977000000000004
933
+ - type: mrr_at_1
934
+ value: 30.97
935
+ - type: mrr_at_10
936
+ value: 39.31
937
+ - type: mrr_at_100
938
+ value: 40.225
939
+ - type: mrr_at_1000
940
+ value: 40.284
941
+ - type: mrr_at_3
942
+ value: 37.111
943
+ - type: mrr_at_5
944
+ value: 38.296
945
+ - type: ndcg_at_1
946
+ value: 30.97
947
+ - type: ndcg_at_10
948
+ value: 40.323
949
+ - type: ndcg_at_100
950
+ value: 45.725
951
+ - type: ndcg_at_1000
952
+ value: 48.022
953
+ - type: ndcg_at_3
954
+ value: 35.772
955
+ - type: ndcg_at_5
956
+ value: 37.741
957
+ - type: precision_at_1
958
+ value: 30.97
959
+ - type: precision_at_10
960
+ value: 6.819
961
+ - type: precision_at_100
962
+ value: 1.061
963
+ - type: precision_at_1000
964
+ value: 0.136
965
+ - type: precision_at_3
966
+ value: 16.387
967
+ - type: precision_at_5
968
+ value: 11.437
969
+ - type: recall_at_1
970
+ value: 26.273000000000003
971
+ - type: recall_at_10
972
+ value: 51.772
973
+ - type: recall_at_100
974
+ value: 75.362
975
+ - type: recall_at_1000
976
+ value: 91.232
977
+ - type: recall_at_3
978
+ value: 39.172000000000004
979
+ - type: recall_at_5
980
+ value: 44.147999999999996
981
+ - task:
982
+ type: Retrieval
983
+ dataset:
984
+ type: cqadupstack/webmasters
985
+ name: MTEB CQADupstackWebmastersRetrieval
986
+ config: default
987
+ split: test
988
+ revision: None
989
+ metrics:
990
+ - type: map_at_1
991
+ value: 28.326
992
+ - type: map_at_10
993
+ value: 37.97
994
+ - type: map_at_100
995
+ value: 39.602
996
+ - type: map_at_1000
997
+ value: 39.812999999999995
998
+ - type: map_at_3
999
+ value: 34.838
1000
+ - type: map_at_5
1001
+ value: 36.582
1002
+ - type: mrr_at_1
1003
+ value: 33.992
1004
+ - type: mrr_at_10
1005
+ value: 42.875
1006
+ - type: mrr_at_100
1007
+ value: 43.78
1008
+ - type: mrr_at_1000
1009
+ value: 43.827
1010
+ - type: mrr_at_3
1011
+ value: 40.481
1012
+ - type: mrr_at_5
1013
+ value: 41.657
1014
+ - type: ndcg_at_1
1015
+ value: 33.992
1016
+ - type: ndcg_at_10
1017
+ value: 44.122
1018
+ - type: ndcg_at_100
1019
+ value: 49.652
1020
+ - type: ndcg_at_1000
1021
+ value: 51.919000000000004
1022
+ - type: ndcg_at_3
1023
+ value: 39.285
1024
+ - type: ndcg_at_5
1025
+ value: 41.449999999999996
1026
+ - type: precision_at_1
1027
+ value: 33.992
1028
+ - type: precision_at_10
1029
+ value: 8.32
1030
+ - type: precision_at_100
1031
+ value: 1.617
1032
+ - type: precision_at_1000
1033
+ value: 0.245
1034
+ - type: precision_at_3
1035
+ value: 18.445
1036
+ - type: precision_at_5
1037
+ value: 13.281
1038
+ - type: recall_at_1
1039
+ value: 28.326
1040
+ - type: recall_at_10
1041
+ value: 55.822
1042
+ - type: recall_at_100
1043
+ value: 80.352
1044
+ - type: recall_at_1000
1045
+ value: 94.441
1046
+ - type: recall_at_3
1047
+ value: 41.704
1048
+ - type: recall_at_5
1049
+ value: 47.513
1050
+ - task:
1051
+ type: Retrieval
1052
+ dataset:
1053
+ type: cqadupstack/wordpress
1054
+ name: MTEB CQADupstackWordpressRetrieval
1055
+ config: default
1056
+ split: test
1057
+ revision: None
1058
+ metrics:
1059
+ - type: map_at_1
1060
+ value: 22.526
1061
+ - type: map_at_10
1062
+ value: 30.206
1063
+ - type: map_at_100
1064
+ value: 31.142999999999997
1065
+ - type: map_at_1000
1066
+ value: 31.246000000000002
1067
+ - type: map_at_3
1068
+ value: 27.807
1069
+ - type: map_at_5
1070
+ value: 29.236
1071
+ - type: mrr_at_1
1072
+ value: 24.399
1073
+ - type: mrr_at_10
1074
+ value: 32.515
1075
+ - type: mrr_at_100
1076
+ value: 33.329
1077
+ - type: mrr_at_1000
1078
+ value: 33.400999999999996
1079
+ - type: mrr_at_3
1080
+ value: 30.159999999999997
1081
+ - type: mrr_at_5
1082
+ value: 31.482
1083
+ - type: ndcg_at_1
1084
+ value: 24.399
1085
+ - type: ndcg_at_10
1086
+ value: 34.806
1087
+ - type: ndcg_at_100
1088
+ value: 39.669
1089
+ - type: ndcg_at_1000
1090
+ value: 42.234
1091
+ - type: ndcg_at_3
1092
+ value: 30.144
1093
+ - type: ndcg_at_5
1094
+ value: 32.481
1095
+ - type: precision_at_1
1096
+ value: 24.399
1097
+ - type: precision_at_10
1098
+ value: 5.453
1099
+ - type: precision_at_100
1100
+ value: 0.8410000000000001
1101
+ - type: precision_at_1000
1102
+ value: 0.117
1103
+ - type: precision_at_3
1104
+ value: 12.815999999999999
1105
+ - type: precision_at_5
1106
+ value: 9.057
1107
+ - type: recall_at_1
1108
+ value: 22.526
1109
+ - type: recall_at_10
1110
+ value: 46.568
1111
+ - type: recall_at_100
1112
+ value: 69.56099999999999
1113
+ - type: recall_at_1000
1114
+ value: 88.474
1115
+ - type: recall_at_3
1116
+ value: 34.205000000000005
1117
+ - type: recall_at_5
1118
+ value: 39.885999999999996
1119
+ - task:
1120
+ type: Retrieval
1121
+ dataset:
1122
+ type: climate-fever
1123
+ name: MTEB ClimateFEVER
1124
+ config: default
1125
+ split: test
1126
+ revision: None
1127
+ metrics:
1128
+ - type: map_at_1
1129
+ value: 14.363000000000001
1130
+ - type: map_at_10
1131
+ value: 24.101
1132
+ - type: map_at_100
1133
+ value: 26.240000000000002
1134
+ - type: map_at_1000
1135
+ value: 26.427
1136
+ - type: map_at_3
1137
+ value: 20.125
1138
+ - type: map_at_5
1139
+ value: 22.128
1140
+ - type: mrr_at_1
1141
+ value: 32.182
1142
+ - type: mrr_at_10
1143
+ value: 44.711
1144
+ - type: mrr_at_100
1145
+ value: 45.523
1146
+ - type: mrr_at_1000
1147
+ value: 45.551
1148
+ - type: mrr_at_3
1149
+ value: 41.443999999999996
1150
+ - type: mrr_at_5
1151
+ value: 43.473
1152
+ - type: ndcg_at_1
1153
+ value: 32.182
1154
+ - type: ndcg_at_10
1155
+ value: 33.495000000000005
1156
+ - type: ndcg_at_100
1157
+ value: 41.192
1158
+ - type: ndcg_at_1000
1159
+ value: 44.346000000000004
1160
+ - type: ndcg_at_3
1161
+ value: 27.651999999999997
1162
+ - type: ndcg_at_5
1163
+ value: 29.634
1164
+ - type: precision_at_1
1165
+ value: 32.182
1166
+ - type: precision_at_10
1167
+ value: 10.391
1168
+ - type: precision_at_100
1169
+ value: 1.8679999999999999
1170
+ - type: precision_at_1000
1171
+ value: 0.246
1172
+ - type: precision_at_3
1173
+ value: 20.586
1174
+ - type: precision_at_5
1175
+ value: 15.648000000000001
1176
+ - type: recall_at_1
1177
+ value: 14.363000000000001
1178
+ - type: recall_at_10
1179
+ value: 39.706
1180
+ - type: recall_at_100
1181
+ value: 65.763
1182
+ - type: recall_at_1000
1183
+ value: 83.296
1184
+ - type: recall_at_3
1185
+ value: 25.064999999999998
1186
+ - type: recall_at_5
1187
+ value: 31.085
1188
+ - task:
1189
+ type: Retrieval
1190
+ dataset:
1191
+ type: dbpedia-entity
1192
+ name: MTEB DBPedia
1193
+ config: default
1194
+ split: test
1195
+ revision: None
1196
+ metrics:
1197
+ - type: map_at_1
1198
+ value: 8.698
1199
+ - type: map_at_10
1200
+ value: 20.237
1201
+ - type: map_at_100
1202
+ value: 28.534
1203
+ - type: map_at_1000
1204
+ value: 30.346
1205
+ - type: map_at_3
1206
+ value: 14.097999999999999
1207
+ - type: map_at_5
1208
+ value: 16.567999999999998
1209
+ - type: mrr_at_1
1210
+ value: 68.0
1211
+ - type: mrr_at_10
1212
+ value: 76.35
1213
+ - type: mrr_at_100
1214
+ value: 76.676
1215
+ - type: mrr_at_1000
1216
+ value: 76.68
1217
+ - type: mrr_at_3
1218
+ value: 74.792
1219
+ - type: mrr_at_5
1220
+ value: 75.717
1221
+ - type: ndcg_at_1
1222
+ value: 56.25
1223
+ - type: ndcg_at_10
1224
+ value: 43.578
1225
+ - type: ndcg_at_100
1226
+ value: 47.928
1227
+ - type: ndcg_at_1000
1228
+ value: 55.312
1229
+ - type: ndcg_at_3
1230
+ value: 47.744
1231
+ - type: ndcg_at_5
1232
+ value: 45.257
1233
+ - type: precision_at_1
1234
+ value: 68.0
1235
+ - type: precision_at_10
1236
+ value: 35.275
1237
+ - type: precision_at_100
1238
+ value: 10.985
1239
+ - type: precision_at_1000
1240
+ value: 2.235
1241
+ - type: precision_at_3
1242
+ value: 52.0
1243
+ - type: precision_at_5
1244
+ value: 44.45
1245
+ - type: recall_at_1
1246
+ value: 8.698
1247
+ - type: recall_at_10
1248
+ value: 26.661
1249
+ - type: recall_at_100
1250
+ value: 54.686
1251
+ - type: recall_at_1000
1252
+ value: 77.795
1253
+ - type: recall_at_3
1254
+ value: 15.536
1255
+ - type: recall_at_5
1256
+ value: 19.578
1257
+ - task:
1258
+ type: Classification
1259
+ dataset:
1260
+ type: mteb/emotion
1261
+ name: MTEB EmotionClassification
1262
+ config: default
1263
+ split: test
1264
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1265
+ metrics:
1266
+ - type: accuracy
1267
+ value: 48.385000000000005
1268
+ - type: f1
1269
+ value: 43.818784352804165
1270
+ - task:
1271
+ type: Retrieval
1272
+ dataset:
1273
+ type: fever
1274
+ name: MTEB FEVER
1275
+ config: default
1276
+ split: test
1277
+ revision: None
1278
+ metrics:
1279
+ - type: map_at_1
1280
+ value: 75.399
1281
+ - type: map_at_10
1282
+ value: 83.02199999999999
1283
+ - type: map_at_100
1284
+ value: 83.204
1285
+ - type: map_at_1000
1286
+ value: 83.217
1287
+ - type: map_at_3
1288
+ value: 81.86
1289
+ - type: map_at_5
1290
+ value: 82.677
1291
+ - type: mrr_at_1
1292
+ value: 81.233
1293
+ - type: mrr_at_10
1294
+ value: 88.10900000000001
1295
+ - type: mrr_at_100
1296
+ value: 88.17099999999999
1297
+ - type: mrr_at_1000
1298
+ value: 88.172
1299
+ - type: mrr_at_3
1300
+ value: 87.289
1301
+ - type: mrr_at_5
1302
+ value: 87.897
1303
+ - type: ndcg_at_1
1304
+ value: 81.233
1305
+ - type: ndcg_at_10
1306
+ value: 86.80600000000001
1307
+ - type: ndcg_at_100
1308
+ value: 87.492
1309
+ - type: ndcg_at_1000
1310
+ value: 87.71600000000001
1311
+ - type: ndcg_at_3
1312
+ value: 84.975
1313
+ - type: ndcg_at_5
1314
+ value: 86.158
1315
+ - type: precision_at_1
1316
+ value: 81.233
1317
+ - type: precision_at_10
1318
+ value: 10.299999999999999
1319
+ - type: precision_at_100
1320
+ value: 1.085
1321
+ - type: precision_at_1000
1322
+ value: 0.11199999999999999
1323
+ - type: precision_at_3
1324
+ value: 32.178000000000004
1325
+ - type: precision_at_5
1326
+ value: 20.069
1327
+ - type: recall_at_1
1328
+ value: 75.399
1329
+ - type: recall_at_10
1330
+ value: 93.533
1331
+ - type: recall_at_100
1332
+ value: 96.32300000000001
1333
+ - type: recall_at_1000
1334
+ value: 97.695
1335
+ - type: recall_at_3
1336
+ value: 88.61099999999999
1337
+ - type: recall_at_5
1338
+ value: 91.617
1339
+ - task:
1340
+ type: Retrieval
1341
+ dataset:
1342
+ type: fiqa
1343
+ name: MTEB FiQA2018
1344
+ config: default
1345
+ split: test
1346
+ revision: None
1347
+ metrics:
1348
+ - type: map_at_1
1349
+ value: 20.564
1350
+ - type: map_at_10
1351
+ value: 33.162000000000006
1352
+ - type: map_at_100
1353
+ value: 35.146
1354
+ - type: map_at_1000
1355
+ value: 35.32
1356
+ - type: map_at_3
1357
+ value: 28.786
1358
+ - type: map_at_5
1359
+ value: 31.22
1360
+ - type: mrr_at_1
1361
+ value: 40.278000000000006
1362
+ - type: mrr_at_10
1363
+ value: 48.577
1364
+ - type: mrr_at_100
1365
+ value: 49.385
1366
+ - type: mrr_at_1000
1367
+ value: 49.423
1368
+ - type: mrr_at_3
1369
+ value: 46.116
1370
+ - type: mrr_at_5
1371
+ value: 47.305
1372
+ - type: ndcg_at_1
1373
+ value: 40.278000000000006
1374
+ - type: ndcg_at_10
1375
+ value: 40.998000000000005
1376
+ - type: ndcg_at_100
1377
+ value: 48.329
1378
+ - type: ndcg_at_1000
1379
+ value: 51.148
1380
+ - type: ndcg_at_3
1381
+ value: 36.852000000000004
1382
+ - type: ndcg_at_5
1383
+ value: 38.146
1384
+ - type: precision_at_1
1385
+ value: 40.278000000000006
1386
+ - type: precision_at_10
1387
+ value: 11.466
1388
+ - type: precision_at_100
1389
+ value: 1.9120000000000001
1390
+ - type: precision_at_1000
1391
+ value: 0.242
1392
+ - type: precision_at_3
1393
+ value: 24.383
1394
+ - type: precision_at_5
1395
+ value: 18.179000000000002
1396
+ - type: recall_at_1
1397
+ value: 20.564
1398
+ - type: recall_at_10
1399
+ value: 48.327999999999996
1400
+ - type: recall_at_100
1401
+ value: 75.89
1402
+ - type: recall_at_1000
1403
+ value: 92.826
1404
+ - type: recall_at_3
1405
+ value: 33.517
1406
+ - type: recall_at_5
1407
+ value: 39.46
1408
+ - task:
1409
+ type: Retrieval
1410
+ dataset:
1411
+ type: hotpotqa
1412
+ name: MTEB HotpotQA
1413
+ config: default
1414
+ split: test
1415
+ revision: None
1416
+ metrics:
1417
+ - type: map_at_1
1418
+ value: 34.294000000000004
1419
+ - type: map_at_10
1420
+ value: 55.435
1421
+ - type: map_at_100
1422
+ value: 56.507
1423
+ - type: map_at_1000
1424
+ value: 56.57600000000001
1425
+ - type: map_at_3
1426
+ value: 51.654999999999994
1427
+ - type: map_at_5
1428
+ value: 54.086
1429
+ - type: mrr_at_1
1430
+ value: 68.589
1431
+ - type: mrr_at_10
1432
+ value: 75.837
1433
+ - type: mrr_at_100
1434
+ value: 76.142
1435
+ - type: mrr_at_1000
1436
+ value: 76.155
1437
+ - type: mrr_at_3
1438
+ value: 74.50099999999999
1439
+ - type: mrr_at_5
1440
+ value: 75.339
1441
+ - type: ndcg_at_1
1442
+ value: 68.589
1443
+ - type: ndcg_at_10
1444
+ value: 63.846000000000004
1445
+ - type: ndcg_at_100
1446
+ value: 67.65
1447
+ - type: ndcg_at_1000
1448
+ value: 69.015
1449
+ - type: ndcg_at_3
1450
+ value: 58.355999999999995
1451
+ - type: ndcg_at_5
1452
+ value: 61.489000000000004
1453
+ - type: precision_at_1
1454
+ value: 68.589
1455
+ - type: precision_at_10
1456
+ value: 13.738
1457
+ - type: precision_at_100
1458
+ value: 1.67
1459
+ - type: precision_at_1000
1460
+ value: 0.185
1461
+ - type: precision_at_3
1462
+ value: 37.736
1463
+ - type: precision_at_5
1464
+ value: 25.11
1465
+ - type: recall_at_1
1466
+ value: 34.294000000000004
1467
+ - type: recall_at_10
1468
+ value: 68.69
1469
+ - type: recall_at_100
1470
+ value: 83.477
1471
+ - type: recall_at_1000
1472
+ value: 92.465
1473
+ - type: recall_at_3
1474
+ value: 56.604
1475
+ - type: recall_at_5
1476
+ value: 62.775000000000006
1477
+ - task:
1478
+ type: Classification
1479
+ dataset:
1480
+ type: mteb/imdb
1481
+ name: MTEB ImdbClassification
1482
+ config: default
1483
+ split: test
1484
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1485
+ metrics:
1486
+ - type: accuracy
1487
+ value: 75.332
1488
+ - type: ap
1489
+ value: 69.58548013224627
1490
+ - type: f1
1491
+ value: 75.19505914957745
1492
+ - task:
1493
+ type: Retrieval
1494
+ dataset:
1495
+ type: msmarco
1496
+ name: MTEB MSMARCO
1497
+ config: default
1498
+ split: dev
1499
+ revision: None
1500
+ metrics:
1501
+ - type: map_at_1
1502
+ value: 19.373
1503
+ - type: map_at_10
1504
+ value: 31.377
1505
+ - type: map_at_100
1506
+ value: 32.635
1507
+ - type: map_at_1000
1508
+ value: 32.688
1509
+ - type: map_at_3
1510
+ value: 27.337
1511
+ - type: map_at_5
1512
+ value: 29.608
1513
+ - type: mrr_at_1
1514
+ value: 19.900000000000002
1515
+ - type: mrr_at_10
1516
+ value: 31.928
1517
+ - type: mrr_at_100
1518
+ value: 33.14
1519
+ - type: mrr_at_1000
1520
+ value: 33.184999999999995
1521
+ - type: mrr_at_3
1522
+ value: 27.955999999999996
1523
+ - type: mrr_at_5
1524
+ value: 30.209999999999997
1525
+ - type: ndcg_at_1
1526
+ value: 19.900000000000002
1527
+ - type: ndcg_at_10
1528
+ value: 38.324000000000005
1529
+ - type: ndcg_at_100
1530
+ value: 44.45
1531
+ - type: ndcg_at_1000
1532
+ value: 45.728
1533
+ - type: ndcg_at_3
1534
+ value: 30.099999999999998
1535
+ - type: ndcg_at_5
1536
+ value: 34.157
1537
+ - type: precision_at_1
1538
+ value: 19.900000000000002
1539
+ - type: precision_at_10
1540
+ value: 6.246
1541
+ - type: precision_at_100
1542
+ value: 0.932
1543
+ - type: precision_at_1000
1544
+ value: 0.104
1545
+ - type: precision_at_3
1546
+ value: 12.937000000000001
1547
+ - type: precision_at_5
1548
+ value: 9.817
1549
+ - type: recall_at_1
1550
+ value: 19.373
1551
+ - type: recall_at_10
1552
+ value: 59.82300000000001
1553
+ - type: recall_at_100
1554
+ value: 88.252
1555
+ - type: recall_at_1000
1556
+ value: 97.962
1557
+ - type: recall_at_3
1558
+ value: 37.480999999999995
1559
+ - type: recall_at_5
1560
+ value: 47.215
1561
+ - task:
1562
+ type: Classification
1563
+ dataset:
1564
+ type: mteb/mtop_domain
1565
+ name: MTEB MTOPDomainClassification (en)
1566
+ config: en
1567
+ split: test
1568
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1569
+ metrics:
1570
+ - type: accuracy
1571
+ value: 94.08800729594162
1572
+ - type: f1
1573
+ value: 93.6743110282188
1574
+ - task:
1575
+ type: Classification
1576
+ dataset:
1577
+ type: mteb/mtop_intent
1578
+ name: MTEB MTOPIntentClassification (en)
1579
+ config: en
1580
+ split: test
1581
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1582
+ metrics:
1583
+ - type: accuracy
1584
+ value: 77.04742362061104
1585
+ - type: f1
1586
+ value: 59.62885599991211
1587
+ - task:
1588
+ type: Classification
1589
+ dataset:
1590
+ type: mteb/amazon_massive_intent
1591
+ name: MTEB MassiveIntentClassification (en)
1592
+ config: en
1593
+ split: test
1594
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1595
+ metrics:
1596
+ - type: accuracy
1597
+ value: 75.58170813718897
1598
+ - type: f1
1599
+ value: 73.57458347240402
1600
+ - task:
1601
+ type: Classification
1602
+ dataset:
1603
+ type: mteb/amazon_massive_scenario
1604
+ name: MTEB MassiveScenarioClassification (en)
1605
+ config: en
1606
+ split: test
1607
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1608
+ metrics:
1609
+ - type: accuracy
1610
+ value: 79.15601882985877
1611
+ - type: f1
1612
+ value: 79.08126473478004
1613
+ - task:
1614
+ type: Clustering
1615
+ dataset:
1616
+ type: mteb/medrxiv-clustering-p2p
1617
+ name: MTEB MedrxivClusteringP2P
1618
+ config: default
1619
+ split: test
1620
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1621
+ metrics:
1622
+ - type: v_measure
1623
+ value: 33.551020623875196
1624
+ - task:
1625
+ type: Clustering
1626
+ dataset:
1627
+ type: mteb/medrxiv-clustering-s2s
1628
+ name: MTEB MedrxivClusteringS2S
1629
+ config: default
1630
+ split: test
1631
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1632
+ metrics:
1633
+ - type: v_measure
1634
+ value: 31.110159113704523
1635
+ - task:
1636
+ type: Reranking
1637
+ dataset:
1638
+ type: mteb/mind_small
1639
+ name: MTEB MindSmallReranking
1640
+ config: default
1641
+ split: test
1642
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1643
+ metrics:
1644
+ - type: map
1645
+ value: 31.960982592404424
1646
+ - type: mrr
1647
+ value: 33.106781262600435
1648
+ - task:
1649
+ type: Retrieval
1650
+ dataset:
1651
+ type: nfcorpus
1652
+ name: MTEB NFCorpus
1653
+ config: default
1654
+ split: test
1655
+ revision: None
1656
+ metrics:
1657
+ - type: map_at_1
1658
+ value: 5.679
1659
+ - type: map_at_10
1660
+ value: 13.922
1661
+ - type: map_at_100
1662
+ value: 17.949
1663
+ - type: map_at_1000
1664
+ value: 19.573999999999998
1665
+ - type: map_at_3
1666
+ value: 10.061
1667
+ - type: map_at_5
1668
+ value: 11.931
1669
+ - type: mrr_at_1
1670
+ value: 47.678
1671
+ - type: mrr_at_10
1672
+ value: 56.701
1673
+ - type: mrr_at_100
1674
+ value: 57.221
1675
+ - type: mrr_at_1000
1676
+ value: 57.260999999999996
1677
+ - type: mrr_at_3
1678
+ value: 54.334
1679
+ - type: mrr_at_5
1680
+ value: 55.85099999999999
1681
+ - type: ndcg_at_1
1682
+ value: 45.975
1683
+ - type: ndcg_at_10
1684
+ value: 37.117
1685
+ - type: ndcg_at_100
1686
+ value: 34.633
1687
+ - type: ndcg_at_1000
1688
+ value: 43.498
1689
+ - type: ndcg_at_3
1690
+ value: 42.475
1691
+ - type: ndcg_at_5
1692
+ value: 40.438
1693
+ - type: precision_at_1
1694
+ value: 47.678
1695
+ - type: precision_at_10
1696
+ value: 27.647
1697
+ - type: precision_at_100
1698
+ value: 9.08
1699
+ - type: precision_at_1000
1700
+ value: 2.218
1701
+ - type: precision_at_3
1702
+ value: 39.938
1703
+ - type: precision_at_5
1704
+ value: 35.17
1705
+ - type: recall_at_1
1706
+ value: 5.679
1707
+ - type: recall_at_10
1708
+ value: 18.552
1709
+ - type: recall_at_100
1710
+ value: 35.799
1711
+ - type: recall_at_1000
1712
+ value: 68.029
1713
+ - type: recall_at_3
1714
+ value: 11.43
1715
+ - type: recall_at_5
1716
+ value: 14.71
1717
+ - task:
1718
+ type: Retrieval
1719
+ dataset:
1720
+ type: nq
1721
+ name: MTEB NQ
1722
+ config: default
1723
+ split: test
1724
+ revision: None
1725
+ metrics:
1726
+ - type: map_at_1
1727
+ value: 29.055999999999997
1728
+ - type: map_at_10
1729
+ value: 45.547
1730
+ - type: map_at_100
1731
+ value: 46.591
1732
+ - type: map_at_1000
1733
+ value: 46.615
1734
+ - type: map_at_3
1735
+ value: 40.81
1736
+ - type: map_at_5
1737
+ value: 43.673
1738
+ - type: mrr_at_1
1739
+ value: 32.763999999999996
1740
+ - type: mrr_at_10
1741
+ value: 47.937999999999995
1742
+ - type: mrr_at_100
1743
+ value: 48.691
1744
+ - type: mrr_at_1000
1745
+ value: 48.705
1746
+ - type: mrr_at_3
1747
+ value: 43.984
1748
+ - type: mrr_at_5
1749
+ value: 46.467999999999996
1750
+ - type: ndcg_at_1
1751
+ value: 32.763999999999996
1752
+ - type: ndcg_at_10
1753
+ value: 53.891999999999996
1754
+ - type: ndcg_at_100
1755
+ value: 58.167
1756
+ - type: ndcg_at_1000
1757
+ value: 58.67099999999999
1758
+ - type: ndcg_at_3
1759
+ value: 45.007999999999996
1760
+ - type: ndcg_at_5
1761
+ value: 49.805
1762
+ - type: precision_at_1
1763
+ value: 32.763999999999996
1764
+ - type: precision_at_10
1765
+ value: 9.186
1766
+ - type: precision_at_100
1767
+ value: 1.1560000000000001
1768
+ - type: precision_at_1000
1769
+ value: 0.12
1770
+ - type: precision_at_3
1771
+ value: 21.012
1772
+ - type: precision_at_5
1773
+ value: 15.348
1774
+ - type: recall_at_1
1775
+ value: 29.055999999999997
1776
+ - type: recall_at_10
1777
+ value: 76.864
1778
+ - type: recall_at_100
1779
+ value: 95.254
1780
+ - type: recall_at_1000
1781
+ value: 98.914
1782
+ - type: recall_at_3
1783
+ value: 53.911
1784
+ - type: recall_at_5
1785
+ value: 64.982
1786
+ - task:
1787
+ type: Retrieval
1788
+ dataset:
1789
+ type: quora
1790
+ name: MTEB QuoraRetrieval
1791
+ config: default
1792
+ split: test
1793
+ revision: None
1794
+ metrics:
1795
+ - type: map_at_1
1796
+ value: 69.393
1797
+ - type: map_at_10
1798
+ value: 83.408
1799
+ - type: map_at_100
1800
+ value: 84.071
1801
+ - type: map_at_1000
1802
+ value: 84.086
1803
+ - type: map_at_3
1804
+ value: 80.372
1805
+ - type: map_at_5
1806
+ value: 82.245
1807
+ - type: mrr_at_1
1808
+ value: 80.06
1809
+ - type: mrr_at_10
1810
+ value: 86.546
1811
+ - type: mrr_at_100
1812
+ value: 86.661
1813
+ - type: mrr_at_1000
1814
+ value: 86.66199999999999
1815
+ - type: mrr_at_3
1816
+ value: 85.56700000000001
1817
+ - type: mrr_at_5
1818
+ value: 86.215
1819
+ - type: ndcg_at_1
1820
+ value: 80.07
1821
+ - type: ndcg_at_10
1822
+ value: 87.372
1823
+ - type: ndcg_at_100
1824
+ value: 88.683
1825
+ - type: ndcg_at_1000
1826
+ value: 88.78
1827
+ - type: ndcg_at_3
1828
+ value: 84.384
1829
+ - type: ndcg_at_5
1830
+ value: 85.978
1831
+ - type: precision_at_1
1832
+ value: 80.07
1833
+ - type: precision_at_10
1834
+ value: 13.345
1835
+ - type: precision_at_100
1836
+ value: 1.5350000000000001
1837
+ - type: precision_at_1000
1838
+ value: 0.157
1839
+ - type: precision_at_3
1840
+ value: 36.973
1841
+ - type: precision_at_5
1842
+ value: 24.334
1843
+ - type: recall_at_1
1844
+ value: 69.393
1845
+ - type: recall_at_10
1846
+ value: 94.994
1847
+ - type: recall_at_100
1848
+ value: 99.523
1849
+ - type: recall_at_1000
1850
+ value: 99.97399999999999
1851
+ - type: recall_at_3
1852
+ value: 86.459
1853
+ - type: recall_at_5
1854
+ value: 90.962
1855
+ - task:
1856
+ type: Clustering
1857
+ dataset:
1858
+ type: mteb/reddit-clustering
1859
+ name: MTEB RedditClustering
1860
+ config: default
1861
+ split: test
1862
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1863
+ metrics:
1864
+ - type: v_measure
1865
+ value: 53.02365304347829
1866
+ - task:
1867
+ type: Clustering
1868
+ dataset:
1869
+ type: mteb/reddit-clustering-p2p
1870
+ name: MTEB RedditClusteringP2P
1871
+ config: default
1872
+ split: test
1873
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1874
+ metrics:
1875
+ - type: v_measure
1876
+ value: 60.4722130918676
1877
+ - task:
1878
+ type: Retrieval
1879
+ dataset:
1880
+ type: scidocs
1881
+ name: MTEB SCIDOCS
1882
+ config: default
1883
+ split: test
1884
+ revision: None
1885
+ metrics:
1886
+ - type: map_at_1
1887
+ value: 4.233
1888
+ - type: map_at_10
1889
+ value: 10.333
1890
+ - type: map_at_100
1891
+ value: 12.286
1892
+ - type: map_at_1000
1893
+ value: 12.594
1894
+ - type: map_at_3
1895
+ value: 7.514
1896
+ - type: map_at_5
1897
+ value: 8.774
1898
+ - type: mrr_at_1
1899
+ value: 20.9
1900
+ - type: mrr_at_10
1901
+ value: 31.232
1902
+ - type: mrr_at_100
1903
+ value: 32.287
1904
+ - type: mrr_at_1000
1905
+ value: 32.352
1906
+ - type: mrr_at_3
1907
+ value: 27.766999999999996
1908
+ - type: mrr_at_5
1909
+ value: 29.487000000000002
1910
+ - type: ndcg_at_1
1911
+ value: 20.9
1912
+ - type: ndcg_at_10
1913
+ value: 17.957
1914
+ - type: ndcg_at_100
1915
+ value: 25.526
1916
+ - type: ndcg_at_1000
1917
+ value: 31.097
1918
+ - type: ndcg_at_3
1919
+ value: 16.915
1920
+ - type: ndcg_at_5
1921
+ value: 14.579
1922
+ - type: precision_at_1
1923
+ value: 20.9
1924
+ - type: precision_at_10
1925
+ value: 9.41
1926
+ - type: precision_at_100
1927
+ value: 2.032
1928
+ - type: precision_at_1000
1929
+ value: 0.337
1930
+ - type: precision_at_3
1931
+ value: 15.767000000000001
1932
+ - type: precision_at_5
1933
+ value: 12.659999999999998
1934
+ - type: recall_at_1
1935
+ value: 4.233
1936
+ - type: recall_at_10
1937
+ value: 19.067999999999998
1938
+ - type: recall_at_100
1939
+ value: 41.257
1940
+ - type: recall_at_1000
1941
+ value: 68.487
1942
+ - type: recall_at_3
1943
+ value: 9.618
1944
+ - type: recall_at_5
1945
+ value: 12.853
1946
+ - task:
1947
+ type: STS
1948
+ dataset:
1949
+ type: mteb/sickr-sts
1950
+ name: MTEB SICK-R
1951
+ config: default
1952
+ split: test
1953
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1954
+ metrics:
1955
+ - type: cos_sim_spearman
1956
+ value: 82.25303886615637
1957
+ - task:
1958
+ type: STS
1959
+ dataset:
1960
+ type: mteb/sts12-sts
1961
+ name: MTEB STS12
1962
+ config: default
1963
+ split: test
1964
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1965
+ metrics:
1966
+ - type: cos_sim_spearman
1967
+ value: 78.27678362978094
1968
+ - task:
1969
+ type: STS
1970
+ dataset:
1971
+ type: mteb/sts13-sts
1972
+ name: MTEB STS13
1973
+ config: default
1974
+ split: test
1975
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1976
+ metrics:
1977
+ - type: cos_sim_spearman
1978
+ value: 85.5228883863618
1979
+ - task:
1980
+ type: STS
1981
+ dataset:
1982
+ type: mteb/sts14-sts
1983
+ name: MTEB STS14
1984
+ config: default
1985
+ split: test
1986
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1987
+ metrics:
1988
+ - type: cos_sim_spearman
1989
+ value: 82.48847836687274
1990
+ - task:
1991
+ type: STS
1992
+ dataset:
1993
+ type: mteb/sts15-sts
1994
+ name: MTEB STS15
1995
+ config: default
1996
+ split: test
1997
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1998
+ metrics:
1999
+ - type: cos_sim_spearman
2000
+ value: 88.76235312662311
2001
+ - task:
2002
+ type: STS
2003
+ dataset:
2004
+ type: mteb/sts16-sts
2005
+ name: MTEB STS16
2006
+ config: default
2007
+ split: test
2008
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2009
+ metrics:
2010
+ - type: cos_sim_spearman
2011
+ value: 87.10893533398001
2012
+ - task:
2013
+ type: STS
2014
+ dataset:
2015
+ type: mteb/sts17-crosslingual-sts
2016
+ name: MTEB STS17 (en-en)
2017
+ config: en-en
2018
+ split: test
2019
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2020
+ metrics:
2021
+ - type: cos_sim_spearman
2022
+ value: 90.10224405448504
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts22-crosslingual-sts
2027
+ name: MTEB STS22 (en)
2028
+ config: en
2029
+ split: test
2030
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2031
+ metrics:
2032
+ - type: cos_sim_spearman
2033
+ value: 68.25088774601221
2034
+ - task:
2035
+ type: STS
2036
+ dataset:
2037
+ type: mteb/stsbenchmark-sts
2038
+ name: MTEB STSBenchmark
2039
+ config: default
2040
+ split: test
2041
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2042
+ metrics:
2043
+ - type: cos_sim_spearman
2044
+ value: 87.15751321128134
2045
+ - task:
2046
+ type: Reranking
2047
+ dataset:
2048
+ type: mteb/scidocs-reranking
2049
+ name: MTEB SciDocsRR
2050
+ config: default
2051
+ split: test
2052
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2053
+ metrics:
2054
+ - type: map
2055
+ value: 79.23418699664575
2056
+ - type: mrr
2057
+ value: 93.72032288698955
2058
+ - task:
2059
+ type: Retrieval
2060
+ dataset:
2061
+ type: scifact
2062
+ name: MTEB SciFact
2063
+ config: default
2064
+ split: test
2065
+ revision: None
2066
+ metrics:
2067
+ - type: map_at_1
2068
+ value: 56.511
2069
+ - type: map_at_10
2070
+ value: 67.062
2071
+ - type: map_at_100
2072
+ value: 67.537
2073
+ - type: map_at_1000
2074
+ value: 67.553
2075
+ - type: map_at_3
2076
+ value: 63.375
2077
+ - type: map_at_5
2078
+ value: 65.828
2079
+ - type: mrr_at_1
2080
+ value: 59.333000000000006
2081
+ - type: mrr_at_10
2082
+ value: 67.95
2083
+ - type: mrr_at_100
2084
+ value: 68.284
2085
+ - type: mrr_at_1000
2086
+ value: 68.30000000000001
2087
+ - type: mrr_at_3
2088
+ value: 65.0
2089
+ - type: mrr_at_5
2090
+ value: 66.93299999999999
2091
+ - type: ndcg_at_1
2092
+ value: 59.333000000000006
2093
+ - type: ndcg_at_10
2094
+ value: 72.08099999999999
2095
+ - type: ndcg_at_100
2096
+ value: 74.232
2097
+ - type: ndcg_at_1000
2098
+ value: 74.657
2099
+ - type: ndcg_at_3
2100
+ value: 65.72200000000001
2101
+ - type: ndcg_at_5
2102
+ value: 69.395
2103
+ - type: precision_at_1
2104
+ value: 59.333000000000006
2105
+ - type: precision_at_10
2106
+ value: 9.8
2107
+ - type: precision_at_100
2108
+ value: 1.097
2109
+ - type: precision_at_1000
2110
+ value: 0.11299999999999999
2111
+ - type: precision_at_3
2112
+ value: 25.444
2113
+ - type: precision_at_5
2114
+ value: 17.533
2115
+ - type: recall_at_1
2116
+ value: 56.511
2117
+ - type: recall_at_10
2118
+ value: 86.63300000000001
2119
+ - type: recall_at_100
2120
+ value: 96.667
2121
+ - type: recall_at_1000
2122
+ value: 100.0
2123
+ - type: recall_at_3
2124
+ value: 70.217
2125
+ - type: recall_at_5
2126
+ value: 78.806
2127
+ - task:
2128
+ type: PairClassification
2129
+ dataset:
2130
+ type: mteb/sprintduplicatequestions-pairclassification
2131
+ name: MTEB SprintDuplicateQuestions
2132
+ config: default
2133
+ split: test
2134
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2135
+ metrics:
2136
+ - type: cos_sim_accuracy
2137
+ value: 99.83861386138614
2138
+ - type: cos_sim_ap
2139
+ value: 96.24728474711715
2140
+ - type: cos_sim_f1
2141
+ value: 91.76351692774129
2142
+ - type: cos_sim_precision
2143
+ value: 92.74770173646579
2144
+ - type: cos_sim_recall
2145
+ value: 90.8
2146
+ - type: dot_accuracy
2147
+ value: 99.62475247524752
2148
+ - type: dot_ap
2149
+ value: 88.12302791709324
2150
+ - type: dot_f1
2151
+ value: 81.0187409899087
2152
+ - type: dot_precision
2153
+ value: 77.98334875115633
2154
+ - type: dot_recall
2155
+ value: 84.3
2156
+ - type: euclidean_accuracy
2157
+ value: 99.83465346534653
2158
+ - type: euclidean_ap
2159
+ value: 95.79574410387337
2160
+ - type: euclidean_f1
2161
+ value: 91.56139464375947
2162
+ - type: euclidean_precision
2163
+ value: 92.54341164453524
2164
+ - type: euclidean_recall
2165
+ value: 90.60000000000001
2166
+ - type: manhattan_accuracy
2167
+ value: 99.84059405940594
2168
+ - type: manhattan_ap
2169
+ value: 95.81230332276807
2170
+ - type: manhattan_f1
2171
+ value: 91.80661577608143
2172
+ - type: manhattan_precision
2173
+ value: 93.47150259067357
2174
+ - type: manhattan_recall
2175
+ value: 90.2
2176
+ - type: max_accuracy
2177
+ value: 99.84059405940594
2178
+ - type: max_ap
2179
+ value: 96.24728474711715
2180
+ - type: max_f1
2181
+ value: 91.80661577608143
2182
+ - task:
2183
+ type: Clustering
2184
+ dataset:
2185
+ type: mteb/stackexchange-clustering
2186
+ name: MTEB StackExchangeClustering
2187
+ config: default
2188
+ split: test
2189
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2190
+ metrics:
2191
+ - type: v_measure
2192
+ value: 63.035694955649866
2193
+ - task:
2194
+ type: Clustering
2195
+ dataset:
2196
+ type: mteb/stackexchange-clustering-p2p
2197
+ name: MTEB StackExchangeClusteringP2P
2198
+ config: default
2199
+ split: test
2200
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2201
+ metrics:
2202
+ - type: v_measure
2203
+ value: 34.00935398440242
2204
+ - task:
2205
+ type: Reranking
2206
+ dataset:
2207
+ type: mteb/stackoverflowdupquestions-reranking
2208
+ name: MTEB StackOverflowDupQuestions
2209
+ config: default
2210
+ split: test
2211
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2212
+ metrics:
2213
+ - type: map
2214
+ value: 49.61138657342161
2215
+ - type: mrr
2216
+ value: 50.26590749936338
2217
+ - task:
2218
+ type: Summarization
2219
+ dataset:
2220
+ type: mteb/summeval
2221
+ name: MTEB SummEval
2222
+ config: default
2223
+ split: test
2224
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2225
+ metrics:
2226
+ - type: cos_sim_pearson
2227
+ value: 30.994071916424655
2228
+ - type: cos_sim_spearman
2229
+ value: 30.010135460886296
2230
+ - type: dot_pearson
2231
+ value: 27.03290596322524
2232
+ - type: dot_spearman
2233
+ value: 28.824264579690357
2234
+ - task:
2235
+ type: Retrieval
2236
+ dataset:
2237
+ type: trec-covid
2238
+ name: MTEB TRECCOVID
2239
+ config: default
2240
+ split: test
2241
+ revision: None
2242
+ metrics:
2243
+ - type: map_at_1
2244
+ value: 0.247
2245
+ - type: map_at_10
2246
+ value: 2.01
2247
+ - type: map_at_100
2248
+ value: 12.912
2249
+ - type: map_at_1000
2250
+ value: 32.35
2251
+ - type: map_at_3
2252
+ value: 0.6859999999999999
2253
+ - type: map_at_5
2254
+ value: 1.089
2255
+ - type: mrr_at_1
2256
+ value: 92.0
2257
+ - type: mrr_at_10
2258
+ value: 95.25
2259
+ - type: mrr_at_100
2260
+ value: 95.25
2261
+ - type: mrr_at_1000
2262
+ value: 95.25
2263
+ - type: mrr_at_3
2264
+ value: 95.0
2265
+ - type: mrr_at_5
2266
+ value: 95.0
2267
+ - type: ndcg_at_1
2268
+ value: 88.0
2269
+ - type: ndcg_at_10
2270
+ value: 80.411
2271
+ - type: ndcg_at_100
2272
+ value: 63.871
2273
+ - type: ndcg_at_1000
2274
+ value: 58.145
2275
+ - type: ndcg_at_3
2276
+ value: 84.75399999999999
2277
+ - type: ndcg_at_5
2278
+ value: 82.372
2279
+ - type: precision_at_1
2280
+ value: 92.0
2281
+ - type: precision_at_10
2282
+ value: 84.8
2283
+ - type: precision_at_100
2284
+ value: 65.84
2285
+ - type: precision_at_1000
2286
+ value: 25.874000000000002
2287
+ - type: precision_at_3
2288
+ value: 90.0
2289
+ - type: precision_at_5
2290
+ value: 88.0
2291
+ - type: recall_at_1
2292
+ value: 0.247
2293
+ - type: recall_at_10
2294
+ value: 2.185
2295
+ - type: recall_at_100
2296
+ value: 16.051000000000002
2297
+ - type: recall_at_1000
2298
+ value: 55.18300000000001
2299
+ - type: recall_at_3
2300
+ value: 0.701
2301
+ - type: recall_at_5
2302
+ value: 1.1360000000000001
2303
+ - task:
2304
+ type: Retrieval
2305
+ dataset:
2306
+ type: webis-touche2020
2307
+ name: MTEB Touche2020
2308
+ config: default
2309
+ split: test
2310
+ revision: None
2311
+ metrics:
2312
+ - type: map_at_1
2313
+ value: 2.094
2314
+ - type: map_at_10
2315
+ value: 9.078
2316
+ - type: map_at_100
2317
+ value: 15.152
2318
+ - type: map_at_1000
2319
+ value: 16.773
2320
+ - type: map_at_3
2321
+ value: 4.67
2322
+ - type: map_at_5
2323
+ value: 6.111
2324
+ - type: mrr_at_1
2325
+ value: 24.490000000000002
2326
+ - type: mrr_at_10
2327
+ value: 39.989000000000004
2328
+ - type: mrr_at_100
2329
+ value: 41.248000000000005
2330
+ - type: mrr_at_1000
2331
+ value: 41.248000000000005
2332
+ - type: mrr_at_3
2333
+ value: 37.075
2334
+ - type: mrr_at_5
2335
+ value: 38.503
2336
+ - type: ndcg_at_1
2337
+ value: 21.429000000000002
2338
+ - type: ndcg_at_10
2339
+ value: 22.312
2340
+ - type: ndcg_at_100
2341
+ value: 35.077999999999996
2342
+ - type: ndcg_at_1000
2343
+ value: 46.903
2344
+ - type: ndcg_at_3
2345
+ value: 24.241
2346
+ - type: ndcg_at_5
2347
+ value: 21.884
2348
+ - type: precision_at_1
2349
+ value: 24.490000000000002
2350
+ - type: precision_at_10
2351
+ value: 20.816000000000003
2352
+ - type: precision_at_100
2353
+ value: 7.673000000000001
2354
+ - type: precision_at_1000
2355
+ value: 1.569
2356
+ - type: precision_at_3
2357
+ value: 27.211000000000002
2358
+ - type: precision_at_5
2359
+ value: 22.857
2360
+ - type: recall_at_1
2361
+ value: 2.094
2362
+ - type: recall_at_10
2363
+ value: 15.546
2364
+ - type: recall_at_100
2365
+ value: 47.764
2366
+ - type: recall_at_1000
2367
+ value: 84.461
2368
+ - type: recall_at_3
2369
+ value: 5.994
2370
+ - type: recall_at_5
2371
+ value: 8.967
2372
+ - task:
2373
+ type: Classification
2374
+ dataset:
2375
+ type: mteb/toxic_conversations_50k
2376
+ name: MTEB ToxicConversationsClassification
2377
+ config: default
2378
+ split: test
2379
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2380
+ metrics:
2381
+ - type: accuracy
2382
+ value: 69.92240000000001
2383
+ - type: ap
2384
+ value: 14.16088899225379
2385
+ - type: f1
2386
+ value: 54.04609416028299
2387
+ - task:
2388
+ type: Classification
2389
+ dataset:
2390
+ type: mteb/tweet_sentiment_extraction
2391
+ name: MTEB TweetSentimentExtractionClassification
2392
+ config: default
2393
+ split: test
2394
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2395
+ metrics:
2396
+ - type: accuracy
2397
+ value: 60.764006791171475
2398
+ - type: f1
2399
+ value: 61.06042158638947
2400
+ - task:
2401
+ type: Clustering
2402
+ dataset:
2403
+ type: mteb/twentynewsgroups-clustering
2404
+ name: MTEB TwentyNewsgroupsClustering
2405
+ config: default
2406
+ split: test
2407
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2408
+ metrics:
2409
+ - type: v_measure
2410
+ value: 49.37015403955057
2411
+ - task:
2412
+ type: PairClassification
2413
+ dataset:
2414
+ type: mteb/twittersemeval2015-pairclassification
2415
+ name: MTEB TwitterSemEval2015
2416
+ config: default
2417
+ split: test
2418
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2419
+ metrics:
2420
+ - type: cos_sim_accuracy
2421
+ value: 86.8510460749836
2422
+ - type: cos_sim_ap
2423
+ value: 76.13675917697662
2424
+ - type: cos_sim_f1
2425
+ value: 69.72121212121213
2426
+ - type: cos_sim_precision
2427
+ value: 64.48430493273543
2428
+ - type: cos_sim_recall
2429
+ value: 75.8839050131926
2430
+ - type: dot_accuracy
2431
+ value: 82.2793109614353
2432
+ - type: dot_ap
2433
+ value: 61.68231214221829
2434
+ - type: dot_f1
2435
+ value: 59.873802290254716
2436
+ - type: dot_precision
2437
+ value: 53.73322147651006
2438
+ - type: dot_recall
2439
+ value: 67.59894459102902
2440
+ - type: euclidean_accuracy
2441
+ value: 86.78548012159504
2442
+ - type: euclidean_ap
2443
+ value: 75.72625794456354
2444
+ - type: euclidean_f1
2445
+ value: 70.13506753376687
2446
+ - type: euclidean_precision
2447
+ value: 66.66666666666666
2448
+ - type: euclidean_recall
2449
+ value: 73.98416886543535
2450
+ - type: manhattan_accuracy
2451
+ value: 86.78548012159504
2452
+ - type: manhattan_ap
2453
+ value: 75.68264053123454
2454
+ - type: manhattan_f1
2455
+ value: 70.11952191235059
2456
+ - type: manhattan_precision
2457
+ value: 66.38378123526638
2458
+ - type: manhattan_recall
2459
+ value: 74.30079155672823
2460
+ - type: max_accuracy
2461
+ value: 86.8510460749836
2462
+ - type: max_ap
2463
+ value: 76.13675917697662
2464
+ - type: max_f1
2465
+ value: 70.13506753376687
2466
+ - task:
2467
+ type: PairClassification
2468
+ dataset:
2469
+ type: mteb/twitterurlcorpus-pairclassification
2470
+ name: MTEB TwitterURLCorpus
2471
+ config: default
2472
+ split: test
2473
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2474
+ metrics:
2475
+ - type: cos_sim_accuracy
2476
+ value: 89.20712539294446
2477
+ - type: cos_sim_ap
2478
+ value: 86.227146559573
2479
+ - type: cos_sim_f1
2480
+ value: 78.8050795036932
2481
+ - type: cos_sim_precision
2482
+ value: 74.7085201793722
2483
+ - type: cos_sim_recall
2484
+ value: 83.37696335078533
2485
+ - type: dot_accuracy
2486
+ value: 86.59525749990297
2487
+ - type: dot_ap
2488
+ value: 79.7714972191685
2489
+ - type: dot_f1
2490
+ value: 73.45451896105789
2491
+ - type: dot_precision
2492
+ value: 69.70891239715135
2493
+ - type: dot_recall
2494
+ value: 77.62550046196489
2495
+ - type: euclidean_accuracy
2496
+ value: 88.92575775216362
2497
+ - type: euclidean_ap
2498
+ value: 85.58942167175054
2499
+ - type: euclidean_f1
2500
+ value: 78.03423522915516
2501
+ - type: euclidean_precision
2502
+ value: 74.76193835084996
2503
+ - type: euclidean_recall
2504
+ value: 81.60609793655682
2505
+ - type: manhattan_accuracy
2506
+ value: 88.92769821865176
2507
+ - type: manhattan_ap
2508
+ value: 85.58316068024254
2509
+ - type: manhattan_f1
2510
+ value: 78.03337843933242
2511
+ - type: manhattan_precision
2512
+ value: 76.23384253819037
2513
+ - type: manhattan_recall
2514
+ value: 79.91992608561749
2515
+ - type: max_accuracy
2516
+ value: 89.20712539294446
2517
+ - type: max_ap
2518
+ value: 86.227146559573
2519
+ - type: max_f1
2520
+ value: 78.8050795036932
2521
  ---
2522
 
2523
  # LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders