Update README.md
Browse files
README.md
CHANGED
@@ -70,8 +70,8 @@ def mean_pooling(model_output, attention_mask):
|
|
70 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
71 |
|
72 |
# Load model from HuggingFace Hub
|
73 |
-
tokenizer = AutoTokenizer.from_pretrained('MiniLM-L6-dmr')
|
74 |
-
model = AutoModel.from_pretrained('MiniLM-L6-dmr')
|
75 |
|
76 |
# Tokenize sentences
|
77 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -93,7 +93,7 @@ print(sentence_embeddings)
|
|
93 |
|
94 |
<!--- Describe how your model was evaluated -->
|
95 |
|
96 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=MiniLM-L6-dmr)
|
97 |
|
98 |
|
99 |
## Training
|
|
|
70 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
71 |
|
72 |
# Load model from HuggingFace Hub
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained('McGill-NLP/MiniLM-L6-dmr')
|
74 |
+
model = AutoModel.from_pretrained('McGill-NLP/MiniLM-L6-dmr')
|
75 |
|
76 |
# Tokenize sentences
|
77 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
93 |
|
94 |
<!--- Describe how your model was evaluated -->
|
95 |
|
96 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=McGill-NLP/MiniLM-L6-dmr)
|
97 |
|
98 |
|
99 |
## Training
|