Create model
Browse files- README.md +152 -0
- config.json +87 -0
- merges.txt +0 -0
- onnx/model.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- quantize_config.json +38 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- text-classification
|
5 |
+
- pytorch
|
6 |
+
- roberta
|
7 |
+
- emotions
|
8 |
+
- multi-class-classification
|
9 |
+
- multi-label-classification
|
10 |
+
datasets:
|
11 |
+
- go_emotions
|
12 |
+
license: mit
|
13 |
+
widget:
|
14 |
+
- text: I am not having a great day.
|
15 |
+
---
|
16 |
+
|
17 |
+
#### Overview
|
18 |
+
|
19 |
+
Model trained from [roberta-base](https://huggingface.co/roberta-base) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset for multi-label classification.
|
20 |
+
|
21 |
+
##### ONNX version also available
|
22 |
+
|
23 |
+
A version of this model in ONNX format (including an INT8 quantized ONNX version) is now available at [https://huggingface.co/SamLowe/roberta-base-go_emotions-onnx](https://huggingface.co/SamLowe/roberta-base-go_emotions-onnx). These are faster for inference, esp for smaller batch sizes, massively reduce the size of the dependencies required for inference, make inference of the model more multi-platform, and in the case of the quantized version reduce the model file/download size by 75% whilst retaining almost all the accuracy if you only need inference.
|
24 |
+
|
25 |
+
#### Dataset used for the model
|
26 |
+
|
27 |
+
[go_emotions](https://huggingface.co/datasets/go_emotions) is based on Reddit data and has 28 labels. It is a multi-label dataset where one or multiple labels may apply for any given input text, hence this model is a multi-label classification model with 28 'probability' float outputs for any given input text. Typically a threshold of 0.5 is applied to the probabilities for the prediction for each label.
|
28 |
+
|
29 |
+
#### How the model was created
|
30 |
+
|
31 |
+
The model was trained using `AutoModelForSequenceClassification.from_pretrained` with `problem_type="multi_label_classification"` for 3 epochs with a learning rate of 2e-5 and weight decay of 0.01.
|
32 |
+
|
33 |
+
#### Inference
|
34 |
+
|
35 |
+
There are multiple ways to use this model in Huggingface Transformers. Possibly the simplest is using a pipeline:
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import pipeline
|
39 |
+
|
40 |
+
classifier = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None)
|
41 |
+
|
42 |
+
sentences = ["I am not having a great day"]
|
43 |
+
|
44 |
+
model_outputs = classifier(sentences)
|
45 |
+
print(model_outputs[0])
|
46 |
+
# produces a list of dicts for each of the labels
|
47 |
+
```
|
48 |
+
|
49 |
+
#### Evaluation / metrics
|
50 |
+
|
51 |
+
Evaluation of the model is available at
|
52 |
+
|
53 |
+
- https://github.com/samlowe/go_emotions-dataset/blob/main/eval-roberta-base-go_emotions.ipynb
|
54 |
+
|
55 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/samlowe/go_emotions-dataset/blob/main/eval-roberta-base-go_emotions.ipynb)
|
56 |
+
|
57 |
+
##### Summary
|
58 |
+
|
59 |
+
As provided in the above notebook, evaluation of the multi-label output (of the 28 dim output via a threshold of 0.5 to binarize each) using the dataset test split gives:
|
60 |
+
|
61 |
+
- Accuracy: 0.474
|
62 |
+
- Precision: 0.575
|
63 |
+
- Recall: 0.396
|
64 |
+
- F1: 0.450
|
65 |
+
|
66 |
+
But the metrics are more meaningful when measured per label given the multi-label nature (each label is effectively an independent binary classification) and the fact that there is drastically different representations of the labels in the dataset.
|
67 |
+
|
68 |
+
With a threshold of 0.5 applied to binarize the model outputs, as per the above notebook, the metrics per label are:
|
69 |
+
|
70 |
+
| | accuracy | precision | recall | f1 | mcc | support | threshold |
|
71 |
+
| -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |
|
72 |
+
| admiration | 0.946 | 0.725 | 0.675 | 0.699 | 0.670 | 504 | 0.5 |
|
73 |
+
| amusement | 0.982 | 0.790 | 0.871 | 0.829 | 0.821 | 264 | 0.5 |
|
74 |
+
| anger | 0.970 | 0.652 | 0.379 | 0.479 | 0.483 | 198 | 0.5 |
|
75 |
+
| annoyance | 0.940 | 0.472 | 0.159 | 0.238 | 0.250 | 320 | 0.5 |
|
76 |
+
| approval | 0.942 | 0.609 | 0.302 | 0.404 | 0.403 | 351 | 0.5 |
|
77 |
+
| caring | 0.973 | 0.448 | 0.319 | 0.372 | 0.364 | 135 | 0.5 |
|
78 |
+
| confusion | 0.972 | 0.500 | 0.431 | 0.463 | 0.450 | 153 | 0.5 |
|
79 |
+
| curiosity | 0.950 | 0.537 | 0.356 | 0.428 | 0.412 | 284 | 0.5 |
|
80 |
+
| desire | 0.987 | 0.630 | 0.410 | 0.496 | 0.502 | 83 | 0.5 |
|
81 |
+
| disappointment | 0.974 | 0.625 | 0.199 | 0.302 | 0.343 | 151 | 0.5 |
|
82 |
+
| disapproval | 0.950 | 0.494 | 0.307 | 0.379 | 0.365 | 267 | 0.5 |
|
83 |
+
| disgust | 0.982 | 0.707 | 0.333 | 0.453 | 0.478 | 123 | 0.5 |
|
84 |
+
| embarrassment | 0.994 | 0.750 | 0.243 | 0.367 | 0.425 | 37 | 0.5 |
|
85 |
+
| excitement | 0.983 | 0.603 | 0.340 | 0.435 | 0.445 | 103 | 0.5 |
|
86 |
+
| fear | 0.992 | 0.758 | 0.603 | 0.671 | 0.672 | 78 | 0.5 |
|
87 |
+
| gratitude | 0.990 | 0.960 | 0.881 | 0.919 | 0.914 | 352 | 0.5 |
|
88 |
+
| grief | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 6 | 0.5 |
|
89 |
+
| joy | 0.978 | 0.647 | 0.559 | 0.600 | 0.590 | 161 | 0.5 |
|
90 |
+
| love | 0.982 | 0.773 | 0.832 | 0.802 | 0.793 | 238 | 0.5 |
|
91 |
+
| nervousness | 0.996 | 0.600 | 0.130 | 0.214 | 0.278 | 23 | 0.5 |
|
92 |
+
| optimism | 0.972 | 0.667 | 0.376 | 0.481 | 0.488 | 186 | 0.5 |
|
93 |
+
| pride | 0.997 | 0.000 | 0.000 | 0.000 | 0.000 | 16 | 0.5 |
|
94 |
+
| realization | 0.974 | 0.541 | 0.138 | 0.220 | 0.264 | 145 | 0.5 |
|
95 |
+
| relief | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 11 | 0.5 |
|
96 |
+
| remorse | 0.991 | 0.553 | 0.750 | 0.636 | 0.640 | 56 | 0.5 |
|
97 |
+
| sadness | 0.977 | 0.621 | 0.494 | 0.550 | 0.542 | 156 | 0.5 |
|
98 |
+
| surprise | 0.981 | 0.750 | 0.404 | 0.525 | 0.542 | 141 | 0.5 |
|
99 |
+
| neutral | 0.782 | 0.694 | 0.604 | 0.646 | 0.492 | 1787 | 0.5 |
|
100 |
+
|
101 |
+
Optimizing the threshold per label for the one that gives the optimum F1 metrics gives slightly better metrics - sacrificing some precision for a greater gain in recall, hence to the benefit of F1 (how this was done is shown in the above notebook):
|
102 |
+
|
103 |
+
| | accuracy | precision | recall | f1 | mcc | support | threshold |
|
104 |
+
| -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |
|
105 |
+
| admiration | 0.940 | 0.651 | 0.776 | 0.708 | 0.678 | 504 | 0.25 |
|
106 |
+
| amusement | 0.982 | 0.781 | 0.890 | 0.832 | 0.825 | 264 | 0.45 |
|
107 |
+
| anger | 0.959 | 0.454 | 0.601 | 0.517 | 0.502 | 198 | 0.15 |
|
108 |
+
| annoyance | 0.864 | 0.243 | 0.619 | 0.349 | 0.328 | 320 | 0.10 |
|
109 |
+
| approval | 0.926 | 0.432 | 0.442 | 0.437 | 0.397 | 351 | 0.30 |
|
110 |
+
| caring | 0.972 | 0.426 | 0.385 | 0.405 | 0.391 | 135 | 0.40 |
|
111 |
+
| confusion | 0.974 | 0.548 | 0.412 | 0.470 | 0.462 | 153 | 0.55 |
|
112 |
+
| curiosity | 0.943 | 0.473 | 0.711 | 0.568 | 0.552 | 284 | 0.25 |
|
113 |
+
| desire | 0.985 | 0.518 | 0.530 | 0.524 | 0.516 | 83 | 0.25 |
|
114 |
+
| disappointment | 0.974 | 0.562 | 0.298 | 0.390 | 0.398 | 151 | 0.40 |
|
115 |
+
| disapproval | 0.941 | 0.414 | 0.468 | 0.439 | 0.409 | 267 | 0.30 |
|
116 |
+
| disgust | 0.978 | 0.523 | 0.463 | 0.491 | 0.481 | 123 | 0.20 |
|
117 |
+
| embarrassment | 0.994 | 0.567 | 0.459 | 0.507 | 0.507 | 37 | 0.10 |
|
118 |
+
| excitement | 0.981 | 0.500 | 0.417 | 0.455 | 0.447 | 103 | 0.35 |
|
119 |
+
| fear | 0.991 | 0.712 | 0.667 | 0.689 | 0.685 | 78 | 0.40 |
|
120 |
+
| gratitude | 0.990 | 0.957 | 0.889 | 0.922 | 0.917 | 352 | 0.45 |
|
121 |
+
| grief | 0.999 | 0.333 | 0.333 | 0.333 | 0.333 | 6 | 0.05 |
|
122 |
+
| joy | 0.978 | 0.623 | 0.646 | 0.634 | 0.623 | 161 | 0.40 |
|
123 |
+
| love | 0.982 | 0.740 | 0.899 | 0.812 | 0.807 | 238 | 0.25 |
|
124 |
+
| nervousness | 0.996 | 0.571 | 0.348 | 0.432 | 0.444 | 23 | 0.25 |
|
125 |
+
| optimism | 0.971 | 0.580 | 0.565 | 0.572 | 0.557 | 186 | 0.20 |
|
126 |
+
| pride | 0.998 | 0.875 | 0.438 | 0.583 | 0.618 | 16 | 0.10 |
|
127 |
+
| realization | 0.961 | 0.270 | 0.262 | 0.266 | 0.246 | 145 | 0.15 |
|
128 |
+
| relief | 0.992 | 0.152 | 0.636 | 0.246 | 0.309 | 11 | 0.05 |
|
129 |
+
| remorse | 0.991 | 0.541 | 0.946 | 0.688 | 0.712 | 56 | 0.10 |
|
130 |
+
| sadness | 0.977 | 0.599 | 0.583 | 0.591 | 0.579 | 156 | 0.40 |
|
131 |
+
| surprise | 0.977 | 0.543 | 0.674 | 0.601 | 0.593 | 141 | 0.15 |
|
132 |
+
| neutral | 0.758 | 0.598 | 0.810 | 0.688 | 0.513 | 1787 | 0.25 |
|
133 |
+
|
134 |
+
This improves the overall metrics:
|
135 |
+
|
136 |
+
- Precision: 0.542
|
137 |
+
- Recall: 0.577
|
138 |
+
- F1: 0.541
|
139 |
+
|
140 |
+
Or if calculated weighted by the relative size of the support of each label:
|
141 |
+
|
142 |
+
- Precision: 0.572
|
143 |
+
- Recall: 0.677
|
144 |
+
- F1: 0.611
|
145 |
+
|
146 |
+
#### Commentary on the dataset
|
147 |
+
|
148 |
+
Some labels (E.g. gratitude) when considered independently perform very strongly with F1 exceeding 0.9, whilst others (E.g. relief) perform very poorly.
|
149 |
+
|
150 |
+
This is a challenging dataset. Labels such as relief do have much fewer examples in the training data (less than 100 out of the 40k+, and only 11 in the test split).
|
151 |
+
|
152 |
+
But there is also some ambiguity and/or labelling errors visible in the training data of go_emotions that is suspected to constrain the performance. Data cleaning on the dataset to reduce some of the mistakes, ambiguity, conflicts and duplication in the labelling would produce a higher performing model.
|
config.json
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "SamLowe/roberta-base-go_emotions",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "admiration",
|
15 |
+
"1": "amusement",
|
16 |
+
"2": "anger",
|
17 |
+
"3": "annoyance",
|
18 |
+
"4": "approval",
|
19 |
+
"5": "caring",
|
20 |
+
"6": "confusion",
|
21 |
+
"7": "curiosity",
|
22 |
+
"8": "desire",
|
23 |
+
"9": "disappointment",
|
24 |
+
"10": "disapproval",
|
25 |
+
"11": "disgust",
|
26 |
+
"12": "embarrassment",
|
27 |
+
"13": "excitement",
|
28 |
+
"14": "fear",
|
29 |
+
"15": "gratitude",
|
30 |
+
"16": "grief",
|
31 |
+
"17": "joy",
|
32 |
+
"18": "love",
|
33 |
+
"19": "nervousness",
|
34 |
+
"20": "optimism",
|
35 |
+
"21": "pride",
|
36 |
+
"22": "realization",
|
37 |
+
"23": "relief",
|
38 |
+
"24": "remorse",
|
39 |
+
"25": "sadness",
|
40 |
+
"26": "surprise",
|
41 |
+
"27": "neutral"
|
42 |
+
},
|
43 |
+
"initializer_range": 0.02,
|
44 |
+
"intermediate_size": 3072,
|
45 |
+
"label2id": {
|
46 |
+
"admiration": 0,
|
47 |
+
"amusement": 1,
|
48 |
+
"anger": 2,
|
49 |
+
"annoyance": 3,
|
50 |
+
"approval": 4,
|
51 |
+
"caring": 5,
|
52 |
+
"confusion": 6,
|
53 |
+
"curiosity": 7,
|
54 |
+
"desire": 8,
|
55 |
+
"disappointment": 9,
|
56 |
+
"disapproval": 10,
|
57 |
+
"disgust": 11,
|
58 |
+
"embarrassment": 12,
|
59 |
+
"excitement": 13,
|
60 |
+
"fear": 14,
|
61 |
+
"gratitude": 15,
|
62 |
+
"grief": 16,
|
63 |
+
"joy": 17,
|
64 |
+
"love": 18,
|
65 |
+
"nervousness": 19,
|
66 |
+
"neutral": 27,
|
67 |
+
"optimism": 20,
|
68 |
+
"pride": 21,
|
69 |
+
"realization": 22,
|
70 |
+
"relief": 23,
|
71 |
+
"remorse": 24,
|
72 |
+
"sadness": 25,
|
73 |
+
"surprise": 26
|
74 |
+
},
|
75 |
+
"layer_norm_eps": 1e-05,
|
76 |
+
"max_position_embeddings": 514,
|
77 |
+
"model_type": "roberta",
|
78 |
+
"num_attention_heads": 12,
|
79 |
+
"num_hidden_layers": 12,
|
80 |
+
"pad_token_id": 1,
|
81 |
+
"position_embedding_type": "absolute",
|
82 |
+
"problem_type": "multi_label_classification",
|
83 |
+
"transformers_version": "4.43.4",
|
84 |
+
"type_vocab_size": 1,
|
85 |
+
"use_cache": true,
|
86 |
+
"vocab_size": 50265
|
87 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9030077129762d29c9362fef3a177954607311862e3e7abcfa35ed1b3f28a074
|
3 |
+
size 498950580
|
onnx/model_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bfb174aca41977c5a02dad5c058c5e517e84d8e3ed6d88fbc70522216153289
|
3 |
+
size 125924855
|
quantize_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"per_channel": true,
|
3 |
+
"reduce_range": true,
|
4 |
+
"per_model_config": {
|
5 |
+
"model": {
|
6 |
+
"op_types": [
|
7 |
+
"Shape",
|
8 |
+
"Gather",
|
9 |
+
"Equal",
|
10 |
+
"Pow",
|
11 |
+
"Sub",
|
12 |
+
"Not",
|
13 |
+
"Div",
|
14 |
+
"ConstantOfShape",
|
15 |
+
"Expand",
|
16 |
+
"Unsqueeze",
|
17 |
+
"Reshape",
|
18 |
+
"Gemm",
|
19 |
+
"Constant",
|
20 |
+
"Slice",
|
21 |
+
"CumSum",
|
22 |
+
"Erf",
|
23 |
+
"MatMul",
|
24 |
+
"Cast",
|
25 |
+
"Sqrt",
|
26 |
+
"Mul",
|
27 |
+
"Add",
|
28 |
+
"Softmax",
|
29 |
+
"Concat",
|
30 |
+
"Tanh",
|
31 |
+
"Where",
|
32 |
+
"Transpose",
|
33 |
+
"ReduceMean"
|
34 |
+
],
|
35 |
+
"weight_type": "QInt8"
|
36 |
+
}
|
37 |
+
}
|
38 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 128,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "<pad>",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "</s>",
|
58 |
+
"stride": 0,
|
59 |
+
"tokenizer_class": "RobertaTokenizer",
|
60 |
+
"trim_offsets": true,
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "<unk>"
|
64 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|