File size: 1,184 Bytes
39468b0
3fb8f81
 
 
 
 
 
 
 
 
 
39468b0
 
3fb8f81
 
39468b0
3fb8f81
39468b0
3fb8f81
39468b0
3fb8f81
39468b0
3fb8f81
39468b0
3fb8f81
39468b0
3fb8f81
39468b0
3fb8f81
39468b0
3fb8f81
39468b0
3fb8f81
39468b0
3fb8f81
39468b0
3fb8f81
 
 
 
 
 
 
 
 
39468b0
3fb8f81
39468b0
3fb8f81
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama3-8B-Medical-Finetune-V3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama3-8B-Medical-Finetune-V3

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 5

### Framework versions

- PEFT 0.13.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1