MoritzLaurer HF staff commited on
Commit
ec97e87
1 Parent(s): 24688b3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -5
README.md CHANGED
@@ -1,7 +1,21 @@
1
  ---
2
  language:
3
  - multilingual
4
- - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  tags:
6
  - zero-shot-classification
7
  - text-classification
@@ -10,8 +24,8 @@ tags:
10
  metrics:
11
  - accuracy
12
  datasets:
13
- - mnli
14
  - xnli
 
15
  pipeline_tag: zero-shot-classification
16
  widget:
17
  - text: "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
@@ -42,7 +56,7 @@ print(prediction)
42
  ```
43
 
44
  ### Training data
45
- This model was trained on the development set of the XNLI dataset and the MNLI dataset. The XNLI development set consists of 5010 professionally translated texts for each of 15 languages (see [this paper](https://arxiv.org/pdf/1809.05053.pdf)). Note that the XNLI train set also contains machine 15 machine translated versions of the MNLI dataset, but due to quality issues with these machine translations, the model was only trained on the XNLI development and the original English MNLI training set (392 702 texts). Not using machine translated texts can avoid overfitting the model to the 15 languages and avoid catastrophic forgetting of the other 85 languages mDeBERTa was pre-trained on.
46
 
47
  ### Training procedure
48
  DeBERTa-v3-base-mnli was trained using the Hugging Face trainer with the following hyperparameters.
@@ -57,13 +71,12 @@ training_args = TrainingArguments(
57
  )
58
  ```
59
  ### Eval results
60
- The model was evaluated using the matched test set and achieves 0.90 accuracy.
61
 
62
  average | ar | bg | de | el | en | es | fr | hi | ru | sw | th | tr | ur | vu | zh
63
  ---------|----------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------
64
  0.808 | 0.802 | 0.829 | 0.825 | 0.826 | 0.883 | 0.845 | 0.834 | 0.771 | 0.813 | 0.748 | 0.793 | 0.807 | 0.740 | 0.795 | 0.8116
65
 
66
- {'ar': 0.8017964071856287, 'bg': 0.8287425149700599, 'de': 0.8253493013972056, 'el': 0.8267465069860279, 'en': 0.8830339321357286, 'es': 0.8449101796407186, 'fr': 0.8343313373253493, 'hi': 0.7712574850299401, 'ru': 0.8127744510978044, 'sw': 0.7483033932135729, 'th': 0.792814371257485, 'tr': 0.8065868263473054, 'ur': 0.7403193612774451, 'vi': 0.7954091816367266, 'zh': 0.8115768463073852}
67
 
68
  ## Limitations and bias
69
  Please consult the original DeBERTa-V3 paper and literature on different NLI datasets for potential biases.
 
1
  ---
2
  language:
3
  - multilingual
4
+ - en
5
+ - ar
6
+ - bg
7
+ - de
8
+ - el
9
+ - es
10
+ - fr
11
+ - hi
12
+ - ru
13
+ - sw
14
+ - th
15
+ - tr
16
+ - ur
17
+ - vu
18
+ - zh
19
  tags:
20
  - zero-shot-classification
21
  - text-classification
 
24
  metrics:
25
  - accuracy
26
  datasets:
 
27
  - xnli
28
+ - mnli
29
  pipeline_tag: zero-shot-classification
30
  widget:
31
  - text: "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
 
56
  ```
57
 
58
  ### Training data
59
+ This model was trained on the XNLI development dataset and the MNLI train dataset. The XNLI development set consists of 5010 professionally translated texts for each of 15 languages (see [this paper](https://arxiv.org/pdf/1809.05053.pdf)). Note that the XNLI contains a training set of 15 machine translated versions of the MNLI dataset for 15 languages, but due to quality issues with these machine translations, this model was only trained on the professional translations from the XNLI development set and the original English MNLI training set (392 702 texts). Not using machine translated texts can avoid overfitting the model to the 15 languages and avoid catastrophic forgetting of the other 85 languages mDeBERTa was pre-trained on.
60
 
61
  ### Training procedure
62
  DeBERTa-v3-base-mnli was trained using the Hugging Face trainer with the following hyperparameters.
 
71
  )
72
  ```
73
  ### Eval results
74
+ The model was evaluated on the XNLI test set. Note that if other multilingual models on the model hub claim performance of around 90% on languages other than English, the authors have most likely made a mistake during testing since non of the latest papers shows a multilingual average performance of more than a few points above 80% on XNLI (see [here](https://arxiv.org/pdf/2111.09543.pdf) or [here](https://arxiv.org/pdf/1911.02116.pdf).
75
 
76
  average | ar | bg | de | el | en | es | fr | hi | ru | sw | th | tr | ur | vu | zh
77
  ---------|----------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------
78
  0.808 | 0.802 | 0.829 | 0.825 | 0.826 | 0.883 | 0.845 | 0.834 | 0.771 | 0.813 | 0.748 | 0.793 | 0.807 | 0.740 | 0.795 | 0.8116
79
 
 
80
 
81
  ## Limitations and bias
82
  Please consult the original DeBERTa-V3 paper and literature on different NLI datasets for potential biases.