Marcus Gawronsky
commited on
Commit
•
9afa7a5
1
Parent(s):
27efffc
Create trainer.py
Browse files- trainer.py +86 -0
trainer.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# We want to train a classification model on our own data
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification, TrainingArguments, Trainer
|
3 |
+
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from datasets import load_dataset, load_from_disk
|
7 |
+
import torch
|
8 |
+
from joblib import cpu_count
|
9 |
+
from fire import Fire
|
10 |
+
|
11 |
+
def get_feature_function(preprocessor, encoder):
|
12 |
+
def feature_extraction_function(examples):
|
13 |
+
data = {}
|
14 |
+
data["pixel_values"] = preprocessor(examples["image"]).pixel_values
|
15 |
+
|
16 |
+
data['label'] = np.eye(len(encoder.classes_))[encoder.transform(examples['product_subcategory_name'])]
|
17 |
+
return data
|
18 |
+
|
19 |
+
return feature_extraction_function
|
20 |
+
|
21 |
+
|
22 |
+
def train(
|
23 |
+
dataset_id,
|
24 |
+
hub_model_id,
|
25 |
+
model_id = 'facebook/convnextv2-atto-1k-224',
|
26 |
+
run_id = 'convextv2-atto-dataset',
|
27 |
+
logging_steps = 100
|
28 |
+
)
|
29 |
+
dataset = load_dataset(dataset_id)
|
30 |
+
preprocessor = AutoImageProcessor.from_pretrained(model_id)
|
31 |
+
|
32 |
+
|
33 |
+
labels = np.unique(dataset['train']['product_subcategory_name'])
|
34 |
+
encoder = LabelEncoder().fit(y=labels)
|
35 |
+
|
36 |
+
model = AutoModelForImageClassification.from_pretrained(model_id,
|
37 |
+
ignore_mismatched_sizes=True,
|
38 |
+
num_labels=len(encoder.classes_),
|
39 |
+
id2label={i: label for i, label in enumerate(encoder.classes_)},
|
40 |
+
label2id={label: i for i, label in enumerate(encoder.classes_)}
|
41 |
+
)
|
42 |
+
|
43 |
+
dataset.set_transform(get_feature_function(preprocessor, encoder))
|
44 |
+
|
45 |
+
training_args = TrainingArguments(
|
46 |
+
output_dir=f"results/{run_id}",
|
47 |
+
remove_unused_columns=False,
|
48 |
+
learning_rate=5e-5,
|
49 |
+
per_device_train_batch_size=32,
|
50 |
+
gradient_accumulation_steps=4,
|
51 |
+
per_device_eval_batch_size=16,
|
52 |
+
num_train_epochs=3,
|
53 |
+
warmup_ratio=0.1,
|
54 |
+
report_to=['tensorboard'],
|
55 |
+
run_name=run_id,
|
56 |
+
logging_steps=logging_steps,
|
57 |
+
eval_steps=logging_steps,
|
58 |
+
save_steps=logging_steps,
|
59 |
+
save_total_limit=1,
|
60 |
+
save_strategy="steps",
|
61 |
+
evaluation_strategy="steps",
|
62 |
+
skip_memory_metrics=False,
|
63 |
+
logging_first_step=True,
|
64 |
+
push_to_hub=True,
|
65 |
+
hub_model_id=hub_model_id,
|
66 |
+
hub_private_repo=True,
|
67 |
+
hub_strategy="every_save",
|
68 |
+
save_safetensors=True,
|
69 |
+
|
70 |
+
# memory
|
71 |
+
dataloader_num_workers=cpu_count()//4, # we have to prefetch the data to ensure efficient and stable GPU utilization
|
72 |
+
dataloader_pin_memory=True
|
73 |
+
)
|
74 |
+
|
75 |
+
trainer = Trainer(
|
76 |
+
model=model,
|
77 |
+
args=training_args,
|
78 |
+
train_dataset=dataset["train"],
|
79 |
+
eval_dataset=dataset["test"]
|
80 |
+
)
|
81 |
+
|
82 |
+
trainer.train()
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == '__main__':
|
86 |
+
Fire(train)
|