--- license: openrail inference: parameters: temperature: 0.7 max_length: 24 language: - en library_name: transformers pipeline_tag: text2text-generation tags: - text-generation-inference widget: - text: 'generate title: Importance, Dataset, AI' example_title: Example 1 - text: 'generate title: Amazon, Product, Business' example_title: Example 2 - text: 'generate title: History, Computer, Software' example_title: Example 3 --- ,,,python def generate_title(keywords): input_ids = tokenizer(keywords, return_tensors="pt", padding="longest", truncation=True, max_length=32).input_ids.to(device) outputs = model.generate( input_ids, num_beams=3, num_beam_groups=3, num_return_sequences=3, repetition_penalty=7.0, diversity_penalty=4.0, no_repeat_ngram_size=3, temperature=0.9, max_length=32 ) return tokenizer.batch_decode(outputs, skip_special_tokens=True) keywords = 'This repository contains a fine-tuned model for generating high-quality product descriptions.' generate_title(keywords) ,,,