--- base_model: BAAI/bge-base-en-v1.5 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: "Reasoning:\n\n1. **Context Grounding**: The provided answer does not directly\ \ reference where to access specific training resources. It rather gives a mixture\ \ of unrelated information such as using a password manager, secure file sharing,\ \ personal development budget, etc. These points, while valid, do not directly\ \ pertain to accessing training resources specifically.\n \n2. **Relevance**:\ \ The response deviates from speaking directly about accessing training resources\ \ and instead covers a broader range of topics, which includes using company systems\ \ for other purposes, security protocols, and personal development budget discussions.\ \ These areas do not directly answer the question.\n\n3. **Conciseness**: The\ \ answer lacks conciseness as it includes quite a bit of unrelated information,\ \ which makes it unnecessarily lengthy and potentially confusing.\n\n4. **Specificity**:\ \ The answer fails to be specific about how to access training resources. If the\ \ document does contain the relevant information, it hasn't been effectively pulled\ \ out or emphasized in the answer.\n\n5. **No-Response Principle**: If a specific\ \ question cannot be answered based on the given document, it should be clearly\ \ stated. Here, it seems the document may not contain a straightforward guide\ \ to accessing training resources, but this isn't clarified.\n\nFinal Result:\ \ **Bad**" - text: '**Reasoning:** 1. **Context Grounding:** The answer is well-supported by Document 1, which specifies that questions about travel reimbursement should be directed to finance@ORGANIZATION_2. 2. **Relevance:** The answer is directly relevant to the question, which asks whom to contact about travel reimbursement. 3. **Conciseness:** The answer is concise and directly addresses the question without including any unnecessary information. 4. **Response Appropriateness:** The answer correctly utilizes the detail provided in the document and does not attempt to provide unnecessary information. 5. **Specificity:** The answer provides the specific email address for the relevant point of contact. 6. **Balanced Detail:** The answer includes the required contact information and is not too general. **Final Result: Good.**' - text: 'The answer provided fulfills the criteria as outlined: 1. **Context Grounding**: The answer accurately reflects the contents of the documents, particularly Document 1, which specifies the steps team leads should take when they consider the possibility that someone''s time at the ORGANIZATION is up. 2. **Relevance**: The answer directly addresses the question by explaining why it is important for team leads to think about the possibility of someone leaving, including the potential benefits of addressing issues before they become unmanageable. 3. **Conciseness**: The answer is somewhat verbose but manages to stay mostly on-topic and addresses the question throughout, ensuring it doesn''t veer into unrelated topics. 4. **Specificity**: While a bit generalized in parts, the answer includes specifics such as underperformance, lack of growth, and disagreement with company direction, which are supported by the details in the documents. Therefore, despite minor verbosity, the answer is accurate, relevant, and detailed enough to be considered good. **Final Result: Good**' - text: 'Reasoning: 1. Context Grounding: The response draws from the documents providing relevant sources such as the organization''s website, job ads, and newsletter link. 2. Relevance: The answer is directly related to the question about understanding the organization''s products, challenges, and future. 3. Conciseness: The answer is clear and to the point. 4. Does not attempt to respond when the document lacks information: It addresses the question appropriately with the available information. 5. Specificity: The answer is specific and provides concrete steps to follow. 6. Relevant tips: The answer includes actionable steps like visiting the website, viewing job ads, and signing up for a newsletter, which are relevant. The answer precisely matches all the criteria set for evaluation. Final Result: Good' - text: 'Reasoning: 1. Context Grounding: The answer is well-grounded in the document, explaining the roles of ORGANIZATION_2, Thomas Barnes, and Charlotte Herrera correctly based on the provided information. 2. Relevance: The answer directly addresses the question, detailing the extent of ORGANIZATION_2''s participation in the farewell process. 3. Conciseness: While mostly concise, the answer could be slightly more succinct. Repetition of certain elements could be minimized. 4. Appropriateness of Response: The answer does not attempt to respond beyond the document. 5. Specificity: The answer is specific, describing the involvement of specific people and their roles. 6. Tips and Generality: The answer includes relevant insights into the roles, though it does not go into overly general territory. Final Result: Good' inference: true model-index: - name: SetFit with BAAI/bge-base-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.6716417910447762 name: Accuracy --- # SetFit with BAAI/bge-base-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.6716 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Netta1994/setfit_baai_newrelic_gpt-4o_cot-instructions_only_reasoning_1726750606.384621") # Run inference preds = model("Reasoning: 1. Context Grounding: The response draws from the documents providing relevant sources such as the organization's website, job ads, and newsletter link. 2. Relevance: The answer is directly related to the question about understanding the organization's products, challenges, and future. 3. Conciseness: The answer is clear and to the point. 4. Does not attempt to respond when the document lacks information: It addresses the question appropriately with the available information. 5. Specificity: The answer is specific and provides concrete steps to follow. 6. Relevant tips: The answer includes actionable steps like visiting the website, viewing job ads, and signing up for a newsletter, which are relevant. The answer precisely matches all the criteria set for evaluation. Final Result: Good") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:---------|:----| | Word count | 87 | 141.3077 | 245 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 32 | | 1 | 33 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0061 | 1 | 0.2339 | - | | 0.3067 | 50 | 0.2693 | - | | 0.6135 | 100 | 0.2364 | - | | 0.9202 | 150 | 0.0942 | - | | 1.2270 | 200 | 0.0031 | - | | 1.5337 | 250 | 0.0019 | - | | 1.8405 | 300 | 0.0016 | - | | 2.1472 | 350 | 0.0016 | - | | 2.4540 | 400 | 0.0015 | - | | 2.7607 | 450 | 0.0013 | - | | 3.0675 | 500 | 0.0013 | - | | 3.3742 | 550 | 0.0012 | - | | 3.6810 | 600 | 0.0012 | - | | 3.9877 | 650 | 0.0012 | - | | 4.2945 | 700 | 0.0012 | - | | 4.6012 | 750 | 0.0011 | - | | 4.9080 | 800 | 0.0011 | - | ### Framework Versions - Python: 3.10.14 - SetFit: 1.1.0 - Sentence Transformers: 3.1.0 - Transformers: 4.44.0 - PyTorch: 2.4.1+cu121 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```